Unit I - Retaining Walls
Reinforced concrete Cantilever and Connterfort Retaining walls. Horizontal backfill with surcharge : Design of Shear keyDesign and Drawing.

Retaining walls:
Retaining walls are generally used to retain earth or such materials to maintain unequal levels on its two faces Retaining walls are used in construction of railways, highways, bridges; carials, basements below ground level, wing walls of bridges, swimming pools and to retain slopes in hilly terrain roads. Retaining walls should be clesigned to resist lateral earth pressure on wall from sides, soil pressure acting vertically on the pooing slab.

Cantilever retaining wall
\rightarrow Cantilever retaining walls are conslancted SorchargaL of reinforced concrete
\rightarrow They consists of relatively thin stem and a base slab.
\rightarrow The base slab is divided into two sheen key parts, the heed and toe.. Heel is the part of the bare slab at backfill side under the backfill. The toe is the portion of the footing at front of wall
\rightarrow Stem is the vertical member holding the backfill.
\rightarrow Shear key projects down the' footing of retaining walls to wall's sliding.
Backfill refers to the soil behind the wall.
\rightarrow Surcharge is an additional lead applied on top of
retaining wal on ground surface
Counterfort retaining wall
\rightarrow For larges heights exceeding sm of earth fill, the bending manat developed in stem, heel and the slabs are very large recalling in larger thidcenss of clements which is uneconomical
\rightarrow Hence counterfort type retaining walls are adopted for

\rightarrow Courtegfort retaining wall consists of stem, there slab and heel slab and the counteforts which subdivide the stems
\rightarrow Centerfort the the slab and base together, reduce shear fore and bending moments imposed on wall by soil
Pb) Design a cantilever retaining wall to retain an embankment of 4 m height above ground level. The density of earth is $181 \mathrm{whm}^{3}$ and its angle of repose is 30°. The earth embankment is horizontal at top. The safe hearing capacity of soil is $200 \mathrm{ku} / \mathrm{m}^{2}$ and the coefficient of friction between the soil and concrete is 0.5 . Adopt moo grade concede and re 415 HYSD bars. Retaining wall with hoirantal
Design data backfill
\rightarrow Height of embankment above ground level $=4 \mathrm{~m}$
\rightarrow Density of worth, $\ell=18 \mathrm{ke} / \mathrm{m}^{3}$

Angle of repare, $\phi=30^{\circ}$
Safe bearing capacity, $\sigma=200 \mathrm{kN} / \mathrm{m}^{2}$
coefficient of friction $=0.5$
M20 grade conceit. HYSD bars
Solution
Step 1-Dimensions of retaining wall
\rightarrow Minimum depth of foundation, d

$$
\begin{aligned}
d & =\left(\frac{\sigma}{e}\right)\left(\frac{1-\sin \phi}{1+\sin \phi}\right)^{2} \\
& =\left(\frac{200}{18}\right)\left(\frac{1-\sin 30}{1+\sin 30}\right)^{2} \\
& =1235 \mathrm{~m}
\end{aligned}
$$

Provide depth of foundation, $d=1.25 \mathrm{~m}$
overall height of wall, $H=4+1.25=5.25 \mathrm{~m}$
\rightarrow Thicluess of bare slab $=H / 12=5.25 / 12=0.438 \mathrm{~m} \simeq 450 \mathrm{~mm}$
(i) Min thiduess $=300 \mathrm{~mm}$
(ii) Thideness of base $s l d \delta=450 \mathrm{~mm}$.

Adopt thiclceess of of stem as 450 mm
\rightarrow Width of base slabs $=0.5 \mathrm{H}$ to 0.6 H

$$
\begin{aligned}
& =(0.5 \times 5.25) \text { to }(0.6 \times 5.25) \\
& =2.625 \text { to } 3.15 \mathrm{~m} \\
& =3 \mathrm{~m}(8 a y)
\end{aligned}
$$

\rightarrow Height of stem, $h=1+$-base slab thidlowes

$$
\begin{aligned}
& =5.25-0.45 \\
\Rightarrow \text { The projection }=b / 3 & =4.8 \mathrm{~m} \\
& =3 / 3=1 \mathrm{~m}
\end{aligned}
$$

Step 2-Pesign of stem
\rightarrow Moment. $M=\left(\mathrm{C}_{4} \mathrm{Qh} h^{3}\right) / 6$

$$
\text { Where } \begin{aligned}
k_{a} & =\frac{1-\sin \phi}{1+\sin \phi}=\frac{1-\sin 30}{1+\sin 30}=0.333 \\
M & =\frac{0.333 \times 18 \times 4.8^{3}}{6}=110.481 \mathrm{kNm}
\end{aligned}
$$

Factored monet, $M_{u}=1.5 \times 110.481=165.722 \mathrm{kNm}$

$$
\begin{aligned}
& \rightarrow M_{u}=0.138 f_{c k} b d^{2} \\
& 165.722 \times 10^{6}=0.138 \times 20 \times 1000 \times d^{2} \\
& d=245.039 \mathrm{~mm} \\
& d=250 \mathrm{~mm}
\end{aligned}
$$

Adept cover as $50 \mathrm{~mm}, D=250+50=300 \mathrm{~mm}$
(i) overall depth $=300 \mathrm{~mm}$
(ii) Base slab thickeners $=-450 \mathrm{~mm}$

Adopt thicluress as 450 mm at bottom and 150 mm at top. \rightarrow Main bars

$$
\begin{aligned}
& M_{u}=0.87 \text { fy Ast } d\left[1-\frac{A_{s}+f_{y}}{\operatorname{lodfl}_{2 l}}\right] \\
& d=450-50=400 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
165.722 \times 10^{6} & =0.87 \times 415 \times A_{S}+\times 400 \times\left[1-\frac{A_{S}+415}{1000 \times 400 \times 20}\right] \\
A_{S t} & =1225.396 \mathrm{~mm}^{2} \\
\text { Minimum ASL } & =0.121 .6 D \\
& =\frac{0.12 \times 1000 \times 450}{100} \\
& =540 \mathrm{mn}^{2} \\
\therefore A_{S 1} & =1225.39 \mathrm{cmm}^{2}
\end{aligned}
$$

Provide 10 mm diameter bars, Spacing $=\frac{1000 \times \text { ass }}{\text { Ast }}$

$$
\begin{aligned}
& \left.=\frac{1000 \times\left(\frac{\pi}{4} \times 16^{2}\right.}{1225.396}\right) \\
& =164.079 \mathrm{~mm}
\end{aligned}
$$

Provide 16 mm decanter bars at 160 mm cc

$$
\begin{aligned}
\text { Provided Pst } & =\frac{1000 \times \text { ast }}{\text { spacing }} \\
& =\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{160} \\
& =1256.637 \mathrm{~m}^{2}
\end{aligned}
$$

\rightarrow Distribution bars
Minimum

$$
\begin{aligned}
A_{s t} & =0.12 \% .6 D \\
& =\frac{0.12 \times 1000 \times 450}{100} \\
& =540 \mathrm{mn}^{2}
\end{aligned}
$$

Provide 10 mm deanielas bars, spacing $=1000 \times \frac{\pi}{4} \times 10^{2}$
Provide comm diameter bars at 140 mm cl

Provided Att $=1000 \times \frac{\pi}{4} \times 10^{2}=561 \mathrm{~mm}^{2}$ 140
Skep 3-Stubility check

$\Sigma \omega=231.03 \mathrm{kw}, \Sigma M=389.101 \mathrm{kwm}$
Point of resultant force acting from base, $2=\frac{\Sigma M}{\Sigma w}=\frac{389.101}{231.03}$

$$
\begin{aligned}
\text { Eccaltrialy }, e=2-6 / 2=1.684-(3 / 2)=0.184 & \sum w & =1.684 \mathrm{~m}
\end{aligned}
$$

Maximum eccentricity, $e=b / 6=316=0.5$

Hence safe

$$
\begin{aligned}
\rightarrow \sigma_{\text {max }}=\frac{\sum \omega}{b}\left[1 \pm \frac{\sigma_{e}}{b}\right] & =\frac{231.03}{3}\left[1 \pm \frac{6 \times 0.18}{3}\right] \\
& =104.73 \mathrm{kw} / \mathrm{m}^{2}<200 \mathrm{ku} / \mathrm{m}^{2} \\
\sigma_{\text {max }} & =49.29 \mathrm{~km}^{2}
\end{aligned}
$$

Step 4 - Design of heel slat
\rightarrow Net manet on structure

$$
M_{u}=1.5 \times 46.93=70.40 \mathrm{kwm}
$$

$M_{u}=0.87 f_{y} A_{0}+d\left[1-\frac{B_{01}+f_{y}}{b d f L}\right]$ where $d=450-50=400 \mathrm{~mm}, b=1000 \mathrm{~mm}$

$$
\begin{aligned}
& 70.4 \times 10^{6}=0.87 \times 415 \times 400 \times A_{S t}\left[1-\frac{A_{S t} \times 45}{1000 \times 400 \times 20}\right] \\
& A_{S t}=500.46 \mathrm{mn}^{2} \\
& \text { minimum Pst }=0.12 \% .1 .5 D=\frac{0.12}{16} \times 1000 \times 450=540 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide lo um ia bars, spacing: $\frac{1000 \times\left(\frac{\pi}{4} \times 10^{2}\right)}{540}=14.5 \cdot 44 \mathrm{~mm}$
Provide Provide sparing 14o mm, A st $=\frac{1000 \times\left(\frac{\pi}{4} \times 10^{2}\right)}{140}=561 \mathrm{~mm}^{2}$

Provide lam dian @14omm cha bars as both main and distribution eeinforemat.
Step 5-Design of toe slab.

$$
\begin{aligned}
& M_{u}=1.5 \times 36.49=54.74 \mathrm{kNm} \\
& M_{u}=0.87 f_{y} A_{s}+d \quad\left[1-\frac{A_{s}+f_{z}}{\text { bale }_{2}}\right] \text { where } d=450.50=400 \mathrm{~mm}, b=1000 \mathrm{~mm} \\
& 54.74 \times 10^{6}=0.87 \times 415 \times A_{s t} \times 400\left[1-\frac{A_{S S} \times 415}{1000 \times 400 \times 20}\right] \\
& A_{s t}=386.79 \mathrm{~mm}^{2}
\end{aligned}
$$

Minivan $A_{01}=0.12 \% \cdot b_{D}=\frac{0.12}{100} \times 1000 \times 450$

$$
=540 \mathrm{~min}^{2}
$$

Provide comm dian bars, Spacing $=\frac{10 x x \times \frac{\pi}{4} \times 0^{2}=145.44 m m ~}{5}$ Provide spacing Home, Hst $=1000 \times 5{ }^{2} \times 10^{2}$

$$
\frac{300 \times \frac{\pi}{4} \times 10^{2}}{145.44}=561 \mathrm{~mm}^{2}
$$

Provide 10 mm dian (e 140 mm dc bars ar both main ad distribution reimporcemet.

Step 6-Perign of Shear key
\rightarrow Horicontal earth pressure, $P=\frac{k_{a} Q H^{2}}{2}=\frac{0.330 \times 18 \times 5.25^{2}}{2}$
Frictiond force, $4 \omega=0.5 \times 231.03$

$$
=82.6 \mathrm{kN}
$$

$$
=115.52 \mathrm{kN}
$$

Fater of sefety againt sliding $=\frac{\mu w}{p}=\frac{115.52}{82.6}=1.4<15$ Hexe shear key is to be provided.
\rightarrow Intersity of carth presure, $P_{p}=k_{p} p$
where $k_{p}=\frac{1+\sin \phi}{1-\sin \phi}=\frac{1+\sin 30}{1-\sin 30}=3$

$$
\therefore P_{P}=3 \times 82.6=247.81 \mathrm{~W}
$$

Asuming depth of shear loy as yromm,
Piessure force at ley, $P_{f}=P_{p} \times 0.45=111.51 \mathrm{kd}$
Fater of safdy $=\frac{\mu w+P_{f}}{P}=\frac{115.52+111.51}{82.6}=2.7571 .5$
\rightarrow Minimum Ast $=0.3 \% b D=\frac{0.3}{100} \times 1000 \times 450=1350 \mathrm{~mm}^{2}$
Provide 16 mm dia burs, spacing $=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{1350}=148.93 \mathrm{ma}$
Providing 140 mn spacig, Ast $=1000 \times \frac{\pi}{r} \times 10^{2}=1436.16 \mathrm{~mm}^{2}$ Provide 16 mm dia batruormck as main reifforement
\rightarrow Minimam $A_{S t}=0.12 \% .6 D=\frac{0.12}{100} \times 1000 \times 450=540 \mathrm{~mm}^{2}$
Provide lamm dia bars, spaing $=\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{540}=145.44 \mathrm{~mm}$ Provide 140 mm spacing, $A_{s t}=\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{140}=561 \mathrm{~mm}^{2}$ Provide 10 mm dia bars at spacing of 140 romalele ar distrifition reifurcement.

Pb) Design a cantilever retaining wall for the following data
Height of wall alone ground laud $=3 \mathrm{~m}$
unit weight of soil $=18 \mathrm{kN}_{\mathrm{N}}{ }^{3}(C)$
Angle of internal friction $=30^{\circ}(\phi)$ (Angle frepose)
Coefficient of friction between soil and concrete $=0.5(4)$
Surcharge angle $=16^{\circ}(\alpha)$.
Safe bearing capacity of sail $=100 \mathrm{kw}^{2} \mathrm{~m}^{2}(\sigma)$
Solution Retaining well with sloping badcfill or surcharge
Step 1 - Dimensions of retaining wall
\rightarrow Minimum depth of foundation, $d=\frac{\sigma}{e} k_{a}^{2}$

$$
\begin{aligned}
L_{c a} & =\cos \alpha \frac{\left(\cos \alpha-\sqrt{\cos ^{2} \alpha-\cos ^{2} \phi}\right)}{\left(\cos \alpha \sqrt{\left.\cos ^{2} \alpha-\cos ^{2} \phi\right)}\right.} \\
& =\cos 16\left(\cos 16-\sqrt{\cos ^{2} 16-\cos ^{2} 3 \theta}\right) \\
& =0.379 \\
\therefore d & =\frac{180 \times 0.379}{18}=0.8 \mathrm{~m}=1 \mathrm{cos} 16-\cos ^{2} 30
\end{aligned}
$$

$$
\cos 2=0.961
$$

Overall height of wall, $H=3+1=4 \mathrm{~m}$
\rightarrow Thictuess of base slab $=1 H / 12=\frac{1}{12}=0.33 \mathrm{M}=333 \mathrm{~mm}$
(i) Minimum thicloess $=300 \mathrm{~mm}$
(ii) Thiluers of base sloes $=333$

Adopt thicluess of base slab as 35.0 mm
\rightarrow width of base slab $=0.5 \mathrm{H}$ to $0.6 \mathrm{HH}=2$ to 2.4 m

$$
b=204 m
$$

(sloping balefil
\rightarrow Tue projection $=2 b$ where $\alpha=\frac{1-\sigma}{2.7 \mathrm{CH}}=1 . \div \frac{1000}{2.7 \times 10 \times 1}=0.486$
\therefore Toe projection $=0.4 .86 \times 2.4=1.166=1.2 m=\frac{1.7}{2.7} \times 18 \times 4$

Step 2 - Design of stem
Moment, $M=\frac{k_{a} l h^{3}}{6} \times \cos \alpha$, where $h=$ height of stem

$$
\begin{aligned}
& =\frac{0.379 \times 18 \times 3.65^{3} \times \cos 16}{6}=4-0.35=3.65 \mathrm{~m} \\
& =55.2891 \mathrm{wm}
\end{aligned}
$$

Fadored mamet, $M_{u}=1.5 \times 55.289=82.934 \mathrm{kwm}$

$$
\begin{aligned}
& \Rightarrow M_{u}=0.138 f_{2} k d^{2} \\
& 82.934 \times 10^{6}=0.138 \times 20 \times 1000 \times d^{2} \\
& d=173.35 \mathrm{~mm}=180 \mathrm{~mm}
\end{aligned}
$$

Adopt Cover as $40 \mathrm{~mm}, D=180+40=22 \mathrm{~mm}$
(i) Overall depth $=220 \mathrm{~mm}$
(ii) Base sch the $=350 \mathrm{~mm}$

Hence adopt t thricuess as 350 mm at bottom and 200 mm at top

\rightarrow Main bars

$$
M_{u}=0.87 \mathrm{ffy}_{y} \text { A td }\left[i_{1}-\frac{A_{5}+f_{y}}{b_{2} f_{i l}}\right] \text { here } d=350-50=300 \mathrm{~m}
$$

$$
\begin{aligned}
87.934 \times 10^{6} & =0.87 \times 415 \times A_{s t} \times 300 \times\left[1-\frac{A_{s}+415}{10000 \times 300 \times 20}\right] \\
A_{S t} & =81 L \cdot 188 \mathrm{~mm}^{2} \\
\text { Minimum } A_{S t} & =0.12 \% .5 D \\
& =\frac{0.12}{100} \times 1000 \times 350 \\
& =420 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 72 mm dia bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 12}{811.188}=13964.2 \mathrm{~mm}$,
Provide spacing, $130 \mathrm{~mm}, \quad A_{01}=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{130}=869.98 \mathrm{~mm}^{2}$
Provide 12 mm dir burs at 130 mm of as main bars.
\rightarrow Distribution bars

$$
\begin{aligned}
\text { Minimum Hst } & =0.121 . \mathrm{hD} \\
& =\frac{0.12}{100} \times 1000 \times 30 \\
& =420 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\text { Provide } 1.2 \mathrm{~mm}=420 \mathrm{~mm}^{2} \text { dir bars, spacing }=\frac{1000 \times \frac{\pi}{4} \times 1 \theta^{2}}{420}=187 \mathrm{~mm}
$$

Provide spacing 180 mm , AsL $=\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{180}=4.36 .33 \mathrm{~mm}^{2}$
Provide 10 mm die bars at 180 mm ck as distribution bars
Step 3-Slatiluly check
Earth pressure acting puadlel to surcharge $\quad 1 \quad P=\frac{14 \mathrm{C} P H_{S}^{2}}{2}=\frac{0.379 \times 18 \times 4244^{2}}{2}$

$$
=61.437 \mathrm{~kW}
$$

Horizontal and, $P_{1+}=P \cos 2=61.437 \times \cos 16=59.057 \mathrm{kN}$ tertial compunats $P_{V}=P \sin \alpha=61.437 \times \sin 16=16.931 .1 \mathrm{k}$

Step 3-Stabilety check

$$
\Sigma w=134+78 \mathrm{kw}, \quad M_{R}=223.8872 \mathrm{dom}
$$

Overtaning Moment, $M_{A}=P_{H} \times \frac{H s}{3}=59.057 \times 4 \cdot 24$ it

$$
=83.546 \mathrm{kim}^{3}
$$

Net monet, $\Sigma \mathrm{N}_{1}=M_{R-M}=223.872-83.546=140.326 \mathrm{kwn}$
Point of resultant force acting from bare, $2=\Sigma \mathrm{m} / \Sigma \omega=1.041$

$$
\text { Ecentrialy, } e=\frac{1}{2}-2=\frac{2.45}{2}, 1.041=0.159
$$

Maximum ecculariaty, $e=b / 6=\frac{2.4}{6}=0.4$
Hence safe

$$
\begin{aligned}
\rightarrow \sigma_{\text {max }} & =\frac{\sum w}{b}\left[1 \pm \frac{6 e}{b}\right] \\
& =\frac{134.78}{2.4}\left[1 \pm \frac{6 \times 0.159}{2.4}\right] \\
\sigma_{\text {max }} & =78.485 \mathrm{kw} / \mathrm{m}^{2}<100 \mathrm{kN} / \mathrm{k}^{2} \\
\sigma_{\text {min }} & =33.835 \mathrm{kw} \mathrm{~m}^{2}
\end{aligned}
$$

Step 4 - Design of heel slab

$$
\begin{aligned}
& \rightarrow M_{a}=1.5 \times 27.225=40: 838 . \mathrm{km} \\
& M_{u}=0.87 \mathrm{ff}_{\mathrm{y}} A_{s}+d\left[\begin{array}{r}
1-f_{y} A_{s} t \\
\text { bd fin }
\end{array}\right] \text { where } d=300 \mathrm{~mm}, 10=1000 \mathrm{~mm} \\
& 40.838 \times 10^{6}=0.87 \times 415 \times A_{s}+300\left[\begin{array}{c}
1-\frac{415 \times A_{s} t}{1000 \times 300 \times 20}
\end{array}\right] \\
& A_{S I}=387 \cdot 4.4 \mathrm{rmm}^{2}
\end{aligned}
$$

Minimum $A_{S t}=0.12 \% b B=\frac{0.12}{100} \times 1000 \times 350=420 \mathrm{~mm}^{2}$

$$
\text { Provide } 12 \mathrm{~mm} \text { die; Spacing }=\frac{1000 \times\left(\frac{\pi}{4} \times 12\right)}{120}=269.28, \mathrm{~mm}
$$

Provide 12 mm diabars @ 2bommck as main bars Ast provided $=\left(1000 \times+1 / 6 \times 12^{2}\right) / 260=434.99 \mathrm{~mm}^{2}$
\rightarrow Min $A_{\Delta 1}=0.12 \% . S_{D}=\frac{0.12}{100} \times 1000 \times \$ 50=420 \mathrm{~mm}^{2}$
Provide 12 mm dia bars, Epacing= $=\frac{1000 \times\left(\frac{\pi}{4} \times 12^{2}\right)}{420}=269: \frac{8}{2} \mathrm{~mm}$
Provide 12 mm dia bars at 260 mm ck as distributcon reiffires

$$
\text { Ast provided }=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{260}=434.99 \mathrm{~mm}^{2} \text {. }
$$

Stap 5 - Design of tere slal

$$
\begin{aligned}
& \rightarrow M_{u}=1.5 \times 36-10+=543152 \mathrm{kWm} \\
& M_{u}=0.87 f_{y} A_{s}+d\left[\begin{array}{c}
1-f_{y} A_{s t} \\
\text { baffic }
\end{array}\right] \text { where } d=30 \mathrm{omm}, b=1000 \mathrm{~mm} \\
& 1 \\
& 544^{\prime} 152 \times 10^{6}=0.87 \times 415 \times A_{s t} \times 300\left[\frac{\left.1-\frac{415 A_{1}}{1000 \times 300 \times 20}\right]}{}\right]
\end{aligned}
$$

$$
A_{S t}=5.8 .555 \mathrm{~mm}^{2}
$$

$\operatorname{Min} A_{S t}=0.12 \% \cdot D D=\frac{0.12}{100} \times 1000 \times 350=420 \mathrm{~mm}^{2}$
Provide 12 mm die, Spacing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{518.55}=218.103 \mathrm{~mm}$
Provide 12 mm dian@ @ ${ }^{210} \mathrm{~mm} k$ a main reinforcement

$$
\begin{aligned}
& \text { Mst provided }=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{210}=538.6 \mathrm{~mm}^{2} \\
& \rightarrow \text { Min A Ot }=0.12 \% b_{D}=\frac{0.12}{100} \times 1000 \times 300=420 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 12 mm dia bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 1.2^{2}}{4.20}=2699 \mathrm{~mm}$
Provide 12 mm dir bors at 2 foam $c k$ as distribution off.

$$
\text { Ast provided }=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{260}=434.99 \mathrm{~mm}^{2}
$$

Stop 6 - Design of Shear ley (Stability against sliding) \rightarrow Horizontal earth pressure, $R=\frac{k_{a} e 1 t^{2}}{2}=\frac{0.7 \times 17 \times 7.75^{2}}{2}$

Frictional fore, hi sw $=0.5 \times 134.78$

$$
=357.37 / \mathrm{w}
$$

$$
=67.3 q \mathrm{k}
$$

Factor of safety against sliding $=\frac{4 e_{2} w}{p_{H}}=\frac{67.39}{59.057}=1.141$
Hence shear key is to be provide l Hence shear key is to be provided
\rightarrow Intensity of earths pressure, $p_{p}=k_{p} p=\frac{1}{k_{a}} \times p$.

$$
\begin{aligned}
& l_{c_{p}}=1 / 10.379=2.639 \quad \text { Pressure at in of toe shes } \\
& \text { flog } \\
& P_{p}=2.639 \times(33.835+22.323):=148.201 \mathrm{kN} \quad
\end{aligned}
$$

Assuming depth of shear ley as 350 mm ,
Pressure force at key, $P_{f}=P_{p} \times 0.35=148.201 \times 0.35$

$$
\begin{aligned}
\text { Factor of safety }=\frac{\text { Lew Pf }}{P_{H}} & =\frac{67.39+51: 87}{59.057} \\
& =2.019>1.5(1 \text { tena.saf) } \\
\rightarrow \text { Min At }=0.3) \cdot b D & =\frac{0.8}{100} \times 1000 \times 350=1050 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\text { Provide } 1 \text { Om di bars, spacing }=\frac{1000+\frac{\pi}{4} \times 16^{2}}{1050}=191.488 \mathrm{~mm}
$$

Provide 16 mm die bars @ 19 mm che as main reinforcement

$$
\text { Provided Dst }=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{190}=1058.22 \mathrm{~mm}^{2}
$$

$$
\rightarrow \text { Min } A_{S F}=0.12 \% b_{D}=\frac{0.12}{100} \times 1000 \times 350=420 \mathrm{~mm}{ }^{2}
$$

Provide 12 mm die bars, Spacing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{t .20}$

$$
=269 . \mathrm{mm}
$$

Provide Nim die bars @g geanmack as distribution bars,

$$
\text { Provided Ast }=\frac{1000 \times \frac{\pi}{6} \times 12^{2}}{260}=436.99 \cdot \mathrm{~mm}^{2}
$$

Stop 7-Stebility against overturning
Factor of safety against $\begin{aligned} \\ \\ \text { ocertuinning }\end{aligned}=\frac{M_{12}}{M_{0}}$

$$
=\frac{223.872}{83-546}=2.6832
$$

Hence see

PL) Design a contelever retaining wall for a read for the following requirements
+1) (Height of wall from the bottom of base to typ of stem $=6 \mathrm{~m}$
2) Superimposed load due to road traffic $=18 \mathrm{kw}_{\mathrm{m}^{3}}(\mathrm{w})$
3) Unit weight of fill $=18 \mathrm{kw} \mathrm{m}^{3}(e)$
4) Angle of internal friction for fill material $=30^{\circ}(\phi)$
5) Allowable bearing pressure on ground $=16 \mathrm{ckN} / \mathrm{m}^{2}(\sigma)$
6) Coefficient of friction between concrete and ground $=0.4$ Also provide a parapet wall in high on, the tee of stem. Use mao concrete and Feyris-steet
Solution Retaining wall with horizontal backfill and
Step1-Dinensionr of retaining wall 1 traffic lord
\rightarrow Assume that a horizontal force $Q=2 \mathrm{kN} / \mathrm{m}$ length of peracid wall will act because of person standing near parapet. Die to superimposed load, equivalat height of fill is given by,

$$
h_{e}=\frac{w}{e}=\frac{18}{18}=1 \mathrm{~m}
$$

Overall height $=6+1=7 \mathrm{~m}$
\rightarrow Thickness of base $s k \mathrm{cks}=H / 12=7 / 12=0.583 \mathrm{~m}=583 \mathrm{~mm}$
(i) Minimum thicloness $=300 \mathrm{~mm}$
(ii) Thideness of base $51 \mathrm{~d} s=583 \mathrm{~mm}$

Adopt thickness of base slab $=600 \mathrm{~mm}$
\rightarrow width of base $56 b=0.5 \mathrm{H}$ to 0.6 H

$$
\begin{aligned}
& =(0.5 \times 7) \text { to }(0.6 \times 7) \\
& =3.5 \mathrm{M} \text { to } 4.2 \mathrm{~m}
\end{aligned}
$$

width of bare slab, $b=4 \mathrm{~m}$
\rightarrow Toe projection $=\alpha b$
where $\alpha=1-\frac{\sigma}{2.2 \mathrm{CH}}$

$$
\begin{aligned}
& =1-\frac{160}{2.2 \times 18 \times 7} \\
& =0.423
\end{aligned}
$$

Toe projection $=0.423 \times y=1.692 \mathrm{~m}$
leap tor projection $=1.7 \mathrm{~m}$
Height of stem, $h=6-0.6=5 \cdot \mathrm{~mm}$
Stop 2 - Design of stem
Monet, $M=\frac{L_{G} Q h^{3}}{6}+\frac{l_{G} w h^{2}}{2}+Q(1,1+1)$

$$
\begin{aligned}
k_{a} & =\frac{1-\sin \phi}{1+\sin \phi}=\frac{1-\sin 30}{1+\sin 30}=0.333 \\
\therefore M & =\frac{0.333 \times 18 \times 5.4^{3}}{6}+\frac{0.333 \times 18 \times 5.4^{2}}{2}+2(5.4+1) \\
& =157.367+87.3 .93+12.8 \\
M & =257.5: 1 \mathrm{wm}
\end{aligned}
$$

Factored monet, $M_{c}=1.5 \times 257.5=386.25 \mathrm{kwm}$

$$
\begin{aligned}
& M_{4}=0.138 \text { file bd } \\
& 386.25 \times 10^{6}=0.138 \times 20 \times 1000 \times d^{2} \\
& \Rightarrow d=374.09 \mathrm{~mm} \simeq 40 \mathrm{~mm}
\end{aligned}
$$

Adopt cover as $50 \mathrm{~mm}, D=400+50=450 \mathrm{~mm}$.

(i) Overall dep th $=450 \mathrm{~mm}$
(ii) Base sld, thiduers $=600 \mathrm{~mm}$

- Provide thicloress of stem as 600 mm at bottom and zoom at top
\rightarrow Main bars

$$
\begin{aligned}
& M_{u}=0.87 f_{y} A_{s t}+\left[i-\frac{f_{y} A_{s t}}{\text { bdflcc }}\right] \text { where } d=600-50=550 \mathrm{~m} \\
& 386.25 \times 10^{6}=0.87 \times 415 \times A_{s t} \times 550\left[1-\frac{415 \times A_{s t}}{1000 \times 550 \times 20}\right] \\
& A_{s t}=2113.62 \mathrm{emm}^{2}
\end{aligned}
$$

Minimum $A_{\Delta t}=\frac{\sigma .12}{100} \times b_{D}=\frac{0.12}{10} \times \cos 00 \times 600=720 \mathrm{~mm}^{2}$
Provide 20 mm die bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 20^{2}}{213.628}=148.635 \mathrm{~mm}$
Provide ram die bars at 1 ranch as main bars

$$
\text { Fovided Est }=\frac{1000 \times \frac{\pi}{4} \times 20^{2}}{140}=2243.995 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
\text { Minimum Att }=0.121 . b_{D} & =\frac{0.12}{100} \times 1000 \times 600 \\
& =72 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 12 mm dia bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{720}$

$$
=157.08 \mathrm{mM}
$$

Provide 12 mm dia bars at 150 mm cl as distribution reinforcement

Provided Asst $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{150}=753.982 \mathrm{~mm}^{2}$
Step 3-Stwility Calculation

$\varepsilon w=314.84 \mathrm{kw}$, Resisting moment, $M_{R}=860.405 \mathrm{kNm}$
\rightarrow Overturning monet due to earth \quad pressure $]=P \times \frac{H}{3}$
where $P=$ Earth pressure $=\frac{k a \nu \mid H^{2}}{2}=\frac{0.333 \times 18 \times 6^{2}}{2}$

$$
=107.8921<\mathrm{N}
$$

\therefore ouecherning moment due to

$$
\text { earth pressure }=107.892 \times \frac{6}{3}=215.784 \mathrm{kN}
$$

Overturning moment due to horizontal force $Q=2 \times \mathrm{Ha}=2 \times 7=14 \mathrm{~km}$ Overturning moment due to traffic load $=\frac{16 w H^{2}}{2}$

$$
=\frac{0.333 \times 18 \times 6^{2}}{2}=107.892 \mathrm{~kW}
$$

\therefore Total overturning mamet, $M_{0}=215.784+14+107.892$

$$
=337.676 \mathrm{kwm}
$$

\rightarrow Net manet, $\Sigma M=M_{R}-M_{0}$

$$
\begin{aligned}
& =860.405-337.676 \\
& =522.729 \mathrm{kwm}
\end{aligned}
$$

\rightarrow Point of resultant force acting from base, $z=\frac{\sum M}{\sum \omega}=\frac{522.729}{314.84}$

$$
z=1.66 \mathrm{~m}
$$

\rightarrow Fceutricity, $e=\frac{b}{2}-2=\frac{4}{2}-1.66=0.34 \mathrm{~m}$
Maximum eccentricity, $e=b / 6=4 / 6=0.667$
Hence safe.

$$
\begin{aligned}
\rightarrow \sigma_{\operatorname{mix}} & =\frac{\sum \omega}{b}\left[1 \pm \frac{6 e}{b}\right] \\
& =\frac{314.84}{4}\left[1 \pm \frac{6 \times \sigma}{4}\right] \\
\sigma_{\max } & =118.852 \mathrm{kw} / \mathrm{m}^{2}<160 \mathrm{kw} \mathrm{~m}^{2} . \text { Hence off } \\
\sigma_{\text {min }} & =38.568 \mathrm{kw} / \mathrm{m}^{2}
\end{aligned}
$$

step 4 - Design of heel slab

$$
\begin{aligned}
& \rightarrow M_{u}=1.5 \times 115.965=173.948 \mathrm{kum} \\
& M_{u}=0.87 f f_{0}+d\left[1-\frac{f y A S t}{b a f i=}\right] \text { where } d=600-50=550 \mathrm{~mm} \\
& 173.948 \times 10^{6}=0.87 \times 415 \times 550 \times\left[\frac{107}{1-415 \times A_{H} t} \frac{1000 \times 550 \times 20}{}\right] \\
& \text { Ass }=907.007 \mathrm{~mm}^{2} \text {. }
\end{aligned}
$$

Provide 16 mm die bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{907.007}$

$$
=221.676 \mathrm{~mm}
$$

Provide 16 mm die bars af 2 rumal as main bars

$$
\begin{aligned}
& \text { Ast, provided }=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{220}=913.718 \mathrm{~mm}^{2} \\
\rightarrow \text { Minimum Att } & =0.12 \% .6 D=\frac{0.12}{100} \times 1000 \times 600=720 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 12 mm dian burs, spacing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{720}$

$$
=157.08 \mathrm{~mm}
$$

Aovide 12 mm diu bars at 150 mm ch as distribution reinforcement

$$
\text { Att provided }=\frac{1000 \times \frac{\pi}{L_{4}} \times 12^{2}}{150}=753.982 \mathrm{~mm}^{2}
$$

Step 5 -Design of toe slab

\rightarrow Factored monad, $M_{u}=1.5 \times 133.619=2001429 \mathrm{kwm}$

$$
\begin{aligned}
& M_{4}=0.87 \mathrm{fy}_{y} A_{s} d\left[\frac{1-f_{d} A_{s t}}{b_{d} f i}\right] \text { where } d=600-50=550 \mathrm{~mm} \\
& 200.429 \times 10^{6}=0.87 \times 415 \times A_{3}+550\left[\begin{array}{c}
1-\frac{415 A_{s}}{1000 \times 550} \times 20
\end{array}\right] \\
& A_{s t}=1050.997 \mathrm{mM}
\end{aligned}
$$

Provide comm die bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{1050,997}=191.306 \mathrm{~mm}$
Provide 16 mm die bars at 19 amch as main bars

$$
\text { Ass proviched }=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{}=1058.221 \mathrm{~mm}^{2}
$$

SLep 6 - Design of shear key (Stibility ogainst sliding)
Frichiond force, $4 \Sigma \omega=0.5 \times 314.84=125.936 \mathrm{kw}$

$$
\text { Fader of suffely againt stiding }=\frac{\mu \Sigma w}{P_{1+}}
$$

Where $P_{H}=$ Tatal horiontal pressuee $=P+Q$

$$
\begin{aligned}
& =2+107.8 .92 \\
& =109.892 \\
\text { FOF } & =\frac{125.936}{109.892}=1.146<1.5
\end{aligned}
$$

Hance shear loy is to be provided.
Intensity of eartl pressure, $P_{p}=k_{p} \left\lvert\, p=\frac{1}{k_{a}} \times p\right.$

$$
\begin{aligned}
& \left(1 l_{p}=1 / 14 \text { or } \frac{1+\sin \phi}{1-\sin \phi}\right) \quad=\frac{1}{0.333} \times(16.163+38.568) \\
& \text { Piessurie at jon } \\
& =254.193 \mathrm{~kW} \\
& \text { of (ey }+ \text { trous (b) }
\end{aligned}
$$

Assuming depth of shear ley as Goumn, Pressure force at k ley, $P_{f}=P_{p} \times 0.6$

$$
\begin{aligned}
& =254.193 \times 0.6 \\
& =152.516 \mathrm{kN}
\end{aligned}
$$

$$
\text { Fador of saftely aguinst slidang= } \begin{aligned}
\frac{\mu \omega+P_{f}}{P_{H}} & =\frac{125.936+152.516}{109.892} \\
& =2.53471 .5
\end{aligned}
$$

Hence safe

$$
\begin{aligned}
\rightarrow \text { min Ast }=0.3 \% \cdot b D & =\frac{0.3}{100} \times 1000 \times 600 \\
& =1800 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 16 mm die bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{1800}=201.062 \mathrm{~mm}$
Provide 16 mm die bars at rum che as main reirforemat

$$
\begin{aligned}
& \text { Att provided }=\frac{1000 \times \frac{\pi}{6} \times 16^{2}}{200}=1809.557 \mathrm{~mm}^{2} \\
\rightarrow & \text { Min At }=0.12 \% .5 D=\frac{0.12}{100} \times 1000 \times 600=72 \mathrm{cmm}^{2}
\end{aligned}
$$

$$
\text { Provide } 12 \mathrm{~mm} \text { die bars, spacing }=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{720}=157.08 \mathrm{~mm}
$$

Provide 12 mm die bars at 150 maclc as distribution reinforremat.

$$
\text { Att provided }=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{150}=753.982 \mathrm{~mm}^{2}
$$

Step7-Stability against ouertuoning

$$
\begin{aligned}
\text { Fader of safety against overturning } & =\frac{M_{R}}{M_{0}} \\
& =\frac{860.405}{337.676} \\
& =2.54872
\end{aligned}
$$

Hence safe

Ex No. 2

COUNTERFORT RETAINING WALL
DATE:

AIM

Design a counterfort retaining wall using the following details.
Height of wall above ground level $=6 \mathrm{~m}$
Safe bearing capacity of soil at site $=160 \mathrm{kN} / \mathrm{m}^{2}$
Angle of internal friction $=33^{\circ}$
Density of soil $=16 \mathrm{kN} / \mathrm{m}^{3}$
Spacing of counterfort $=3 \mathrm{~m}$
Adopt M20 grade concrete and Fe415 HYSD bars.
Draw the following,
(i) Sectional elevation at midway of counterfort.
(ii) Sectional elevation between counterfort.
(iii) Sectional plan at base of counterfort

SOLUTION

Step 1 - Dimensions of retaining wall

Minimum depth of foundation, $\quad d=\left(\frac{\sigma}{\rho}\right)\left(\frac{1-\sin \varnothing}{1+\sin \varnothing}\right)^{2}=0.84 \mathrm{~m}$
Provide depth of foundation, $\mathrm{d}=1 \mathrm{~m}$
Overall height of wall, $\mathrm{H}=6+1=7 \mathrm{~m}$
Spacing of counterfort, $\mathrm{L}=(1 / 3) \mathrm{H}$ to $(1 / 2) \mathrm{H}=2.33$ to $3.5=3 \mathrm{~m}$
Thickness of base slab, $\mathrm{t}=2 \mathrm{LH}=2 \times 3 \times 7=42 \mathrm{~cm}=450 \mathrm{~mm}$ (say)
Width of base slab, $\mathrm{D}=0.6 \mathrm{H}$ to $0.7 \mathrm{H}=4.2$ to $4.9 \mathrm{~m}=4.5 \mathrm{~m}$ (say)
Height of stem, $\mathrm{h}=\mathrm{H}-$ base slab thk $=7-0.45=6.55 \mathrm{~m}$
Toe projection $=(1 / 4) \mathrm{D}=1.13=1.15 \mathrm{~m}$

Step 2 - Design of stem

Pressure intensity at base, $\mathrm{W}=\mathrm{k}_{\mathrm{a}} \rho \mathrm{h}$
$\mathrm{k}_{\mathrm{a}}=(1-\sin \phi) /(1+\sin \phi)=(1-\sin 33) /(1+\sin 33)=0.29$
$\mathrm{W}=0.29 \times 16 \times 6.55=30.39 \mathrm{kN} / \mathrm{m}^{2}$
Working moment, $\mathrm{M}=\left(\mathrm{WL}^{2} / 12\right)=\left(30.39 \times 3^{2}\right) / 12=22.79 \mathrm{kNm}$
Working moment, $\mathrm{M}_{\mathrm{u}}=1.5 \times 22.79=34.19 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{u}}=0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{2}$
$34.19 \times 10^{6}=0.138 \times 20 \times 1000 \mathrm{x} \mathrm{d}^{2}$,
Hence $\mathrm{d}=111.3 \mathrm{~mm}=150 \mathrm{~mm}$
Assuming cover as 50 mm , Overall depth $=150+50=200 \mathrm{~mm}$
Main bars
$\mathrm{M}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}} \mathrm{d}\left[1-\left(\mathrm{A}_{\mathrm{st}} \mathrm{f}_{\mathrm{y}} / \mathrm{bdf} \mathrm{f}_{\mathrm{ck}}\right)\right.$ where $\mathrm{d}=200-50=150 \mathrm{~mm}, \mathrm{~b}=1000 \mathrm{~mm}$ $\mathrm{A}_{\text {st }}=698.87 \mathrm{~mm}^{2}$

Minimum $\mathrm{A}_{\mathrm{st}}=0.12 \% \mathrm{~b} D=240 \mathrm{~mm}^{2}$
Provide 12 smm dia bars, Spacing $=\left(1000 x(\pi / 4) \times 12^{2}\right) / 698.87=161.83=160 \mathrm{~mm}$
Provide 12 mm dia bars @ $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as main reinforcement
Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \mathrm{x}(\pi / 4) \times 12^{2}\right) / 160=706.86 \mathrm{~mm}^{2}$

Distribution bars

Minimum $\mathrm{A}_{\mathrm{st}}=0.12 \% \mathrm{~b} \mathrm{D}=240 \mathrm{~mm}^{2}$,
Provide 8 mm dia bars, Spacing $=\left(1000 x(\pi / 4) \times 8^{2}\right) / 240=209.444=200 \mathrm{~mm}$
Provide 8 mm dia bars @ 200 mm c/c as main reinforcement
Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \mathrm{x}(\pi / 4) \times 8^{2}\right) / 200=251.33 \mathrm{~mm}^{2}$
Step 3 - Stability Check

Load	Magnitude (kN)	Distance (m)	Moment @ a
W1 (Weight of stem)	$6.55 \times 0.2 \times 25$	$(0.2 / 2)+3.15$	106.44
W2 (Weight of base slab)	$4.5 \times 0.45 \times 25$	$4.5 / 2$	113.92
W3 (Weight of earth fill)	$3.15 \times 6.55 \times 16$	$3.15 / 2$	519.94
W4 (Weight of earth fill)	$(1-0.45) \times 1.15 \times 16$	$(1.15 / 2)+0.2+3.15$	34.54
Moment due to earth pressure $=\left(\mathrm{k}_{\mathrm{a}} \mathrm{h}^{3}\right) / 6=\left(0.29 \times 16 \times 6.55^{3}\right) / 6$		217.32	

$\Sigma \mathrm{W}=423.62 \mathrm{kN}, \Sigma \mathrm{M}=992.16 \mathrm{kNm}$
Point of resultant force acting from base, $\mathrm{z}=\Sigma \mathrm{M} / \Sigma \mathrm{W}=2.34 \mathrm{~m}$
Eccentricity, e = z- $(\mathrm{b} / 2)=2.34-(4.5 / 2)=0.09$
Maximum eccentricity $=b / 6=5 / 6=0.83$ Hence safe.
$\sigma_{\text {max, } \min }=\Sigma \mathrm{W} / \mathrm{b}[1 \pm 6 \mathrm{e} / \mathrm{b}]=423.62 / 4.5[1 \pm(6 \mathrm{x} 0.09) / 4.5]$
$\sigma_{\text {max }}=94.89 \mathrm{kN} / \mathrm{m}^{2}<160 \mathrm{kN} / \mathrm{m}^{2} \sigma_{\text {min }}=74.56 \mathrm{kN} / \mathrm{m}^{2}$

Step 4 - Design of heel slab

Net moment on structure
Consider 1 m strip from ' a ' on heel slab

Load	Pressure $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
W1 (Weight to earth fill)	$6.55 \times 16=104.8$
W2 (Weight of base slab)	$0.45 \times 25=11.25$
Upward pressure (abhi)	74.56
Net pressure on structure $=116.05 \sim 74.56=41.49 \mathrm{kN} / \mathrm{m}^{2}$	

Working moment, $\mathrm{M}=\left(\mathrm{WL}^{2} / 12\right)=\left(41.49 \times 3^{2}\right) / 12=10.87 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{u}}=1.5 \times 10.87=16.31 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}} \mathrm{d}\left[1-\left(\mathrm{A}_{\mathrm{st}} \mathrm{f}_{\mathrm{y}} / \mathrm{bdf} \mathrm{f}_{\mathrm{ck}}\right)\right.$ where $\mathrm{d}=450-50=400 \mathrm{~mm}, \mathrm{~b}=1000 \mathrm{~mm}$
$\mathrm{A}_{\mathrm{st}}=113.6 \mathrm{~mm}^{2}$
Minimum $\mathrm{A}_{\mathrm{st}}=0.12 \% \mathrm{bD}=540 \mathrm{~mm}^{2}$,
Provide 10 mm dia bars, Spacing $=\left(1000 \times(\pi / 4) \times 10^{2}\right) / 540=145.444=140 \mathrm{~mm}$
Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \times(\pi / 4) \times 10^{2}\right) / 140=561 \mathrm{~mm}^{2}$
Provide 10 mm dia @ $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ bars as both main and distribution reinforcement
Step 5 - Design of toe slab
Net moment on structure

Load	Magnitude (kN)	Distance (m)	Moment @ c
W1 (Weight to earth fill)	$(1-0.45) \times 1.15 \times 16$	$1.15 / 2$	5.82
W2 (Weight of base slab)	$1.15 \times 0.45 \times 25$	$1.15 / 2$	7.44
Upward pressure (dcnf)	86.69×1.15	$1.15 / 2$	57.32
Upward pressure (nfe)	$(1 / 2) \times 5.2 \times 1.15$	$(2 / 3) \times 1.15$	2.29
Net moment on structure $=13.26 \sim 59.61$			
4			

$\mathrm{M}_{\mathrm{u}}=1.5 \times 46.35=69.53 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {st }} \mathrm{d}\left[1-\left(\mathrm{A}_{\mathrm{st}} \mathrm{f}_{\mathrm{y}} / \mathrm{bdf} \mathrm{f}_{\mathrm{ck}}\right)\right.$ where $\mathrm{d}=450-50=400 \mathrm{~mm}, \mathrm{~b}=1000 \mathrm{~mm}$ $\mathrm{A}_{\text {st }}=494.11 \mathrm{~mm}^{2}$

Minimum $\mathrm{A}_{\mathrm{st}}=0.12 \% \mathrm{bD}=540 \mathrm{~mm}^{2}$,
Provide 10 mm dia bars, Spacing $=\left(1000 \times(\pi / 4) \times 10^{2}\right) / 540=145.444=140 \mathrm{~mm}$
Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \mathrm{x}(\pi / 4) \times 10^{2}\right) / 140=561 \mathrm{~mm}^{2}$
Provide 10 mm dia @ $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ bars as both main and distribution reinforcement

Step 6 - Design of counterfort

Moment, $\mathrm{M}=\left[\left(\mathrm{k}_{\mathrm{a}} \rho \mathrm{H}^{3}\right) / 6\right] \times \mathrm{L}=\left[\left(0.29 \mathrm{x} 16 \mathrm{x} 7^{3}\right) / 6\right] \times 3=795.76 \mathrm{kNm}$
Factored moment $=1.5 \times 795.76=1193.64 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}} \mathrm{d}\left[1-\left(\mathrm{A}_{\text {st }} \mathrm{f}_{\mathrm{y}} / \mathrm{bdf} \mathrm{f}_{\mathrm{ck}}\right)\right]$
$\tan \theta=6.55 / 2.95, \theta=65.75$
$\sin 65.75=\mathrm{d} / 3.15, \mathrm{~d}=2.87 \mathrm{~m}$
Thickness of counterfort, $b=0.2+0.2=0.4 \mathrm{~m}$
$\mathrm{A}_{\text {st }}=1176.96 \mathrm{~mm}^{2}$
Minimum reinforcement is given $\mathrm{A}_{\mathrm{s}} / \mathrm{bd}=0.85 \mathrm{f}_{\mathrm{y}}$,
$\mathrm{A}_{s} /(400 \times 2870)=0.85 \times 415, \mathrm{~A}_{\mathrm{s}}=2351.33 \mathrm{~mm}^{2}$
Provide 5 no's of 28 mm dia bars $\left(\mathrm{A}_{\mathrm{st}}=3078.76 \mathrm{~mm}^{2}\right)$
Step 7 - Connection between counterfort and stem
Pressure intensity @ base $=30.39 \mathrm{kN} / \mathrm{m}^{2}$
Consider the bottom 1 m height of stem,
Lateral pressure transferred $=30.39 \times(3.15-0.2) \times 1=89.65 \mathrm{kN}$
Factored force $=1.5 \times 89.65=134.48 \mathrm{kNm}$
Reinforcement required per metre length $=\mathrm{F} / 0.87 \mathrm{f}_{\mathrm{y}}=\left(134.48 \times 10^{3}\right) /(0.87 \times 415)$

$$
=372.47 \mathrm{~mm}^{2}
$$

Minimum $\mathrm{A}_{\mathrm{st}}=0.12 \% \mathrm{bD}=540 \mathrm{~mm}^{2}$,
Provide 10 mm dia bars, Spacing $=\left(1000 x(\pi / 4) \times 10^{2}\right) / 540=145.44=140 \mathrm{~mm}$ Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \mathrm{x}(\pi / 4) \times 10^{2}\right) / 140=561 \mathrm{~mm}^{2}$

Provide 10 mm dia bars @ 140 mm c/c for connection between counterfort \& stem Step 8 - Connection between counterfort and heel slab

Pressure intensity @ base $=41.49 \mathrm{kN} / \mathrm{m}^{2}$
Consider the bottom 1 m height of stem,
Lateral pressure transferred $=41.49 \times(3.15-0.2) \times 1=122.4 \mathrm{kN}$
Factored force $=1.5 \times 122.4=183.6 \mathrm{kNm}$
Reinforcement required per metre length $=\mathrm{F} / 0.87 \mathrm{f}_{\mathrm{y}}=\left(183.6 \times 10^{3}\right) /(0.87 \times 415)$

$$
=508.52 \mathrm{~mm}^{2}
$$

Minimum $\mathrm{A}_{\mathrm{st}}=0.12 \% \mathrm{bD}=540 \mathrm{~mm}^{2}$,
Provide 10 mm dia bars, Spacing $=\left(1000 x(\pi / 4) \times 10^{2}\right) / 540=145.44=140 \mathrm{~mm}$
Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \mathrm{x}(\pi / 4) \times 10^{2}\right) / 140=561 \mathrm{~mm}^{2}$
Provide 10 mm dia bars @ $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ for connection between counterfort \& heel slab

COUNTERFORT RETAINING WALL

All dimensions are in mm M20 Grade Concrete Fe 415 Grade steel

COUNTERFORT RETAINING WALL

SECTIONAL PLAN AT BASE OF COUNTERFORT
All dimensions are in mm M20 Grade Concrete Fe 415 Grade steel

Unit II - Flat Slabs and Bridges
Design of Flat slabs with and without drops by Direct Design Method of $I 5$ Code - Design and Drawing -IRC Specifications and loading - Re solid slab bridge - Steal Foot owen Bridge - Design and Drawing
Design of Flat slab
Definition
A flat slab is a reinforced concrete slab supported directly over columns without beam. Generally used when headroom is limited and hence used in large industrial structures, warehouses, high rise buildings and hotels

Advantages
\rightarrow Reduces owerdl height. of structure
\rightarrow Flat slab are capable of carrying concentrated loads
\rightarrow Requires 'less formwork.
\rightarrow Better appearance, quality control, fire resistant.
Types of Flat Slab
The different types of flat slab are
\rightarrow Slab without drops and column without colon head

\rightarrow Slab without dup and solumn-with colvim head The colum is widened at its head to reduce punching shear in slab. The widened portion is celled slum head.

\rightarrow Slab with drop and column with column head

moments in the slds are more near the column. Hance theses is thickened near the columns by providing drops.
Panel Divisions
Panel is that, part, of the stab bounded on each of its sides by centre line of columns or cate line of adjacent spans

Colum strip is a design strip having a with of $0.25 l_{2}$ but not greater than ' $0.25 l_{1}$, where ' l_{1} ' is span in direction moments are being determined, measured de of supports and 'la' is span in transuerse direction to l_{1}, measured dc of supports (IS Y56-Py53).

Middle strip means a design strip bounded on each of its opposite sides by column strerip" (I5 456 P353)

Proportioning of flat stab
\rightarrow Drops - Length of drop $=\frac{1}{3} \times$ Parcel length in that doric

$$
\text { - width of drop }=\frac{1}{2} \times \text { Paral legal }
$$

\rightarrow Colum head - $\frac{1}{2} \times$ cum stoup
\rightarrow Thickness of slab- If drops are provided

$$
\begin{aligned}
\text { (Span }) \text { effdesth ratio) } & =40 \text { (mild steed) } \\
& =32 \text { (Feu } 15 \text { (or) Fe } 00 \text {) }
\end{aligned}
$$

- If drops are not provided

$$
\begin{aligned}
& =40 \times 0.9=36 \text { (mild steel) } \\
& =32 \times 0.9=28.8
\end{aligned}
$$

Thickness should not be less then 125 mm (IS 456-PgS3
Determination of $B M+S F$ 31.2.1)

1) Direct design method
2) Equivalent frame method
v) Direct design mellad

Tote mamet (the Gad -we) $M_{0}=\frac{W L_{n}}{8}\left(I 5-P_{g} 55-31.4-2.2\right)$
Where, $M_{0} \rightarrow$ Total moment
$w \rightarrow$ Design load an area $L_{2} \times L_{n}$
$L_{n \rightarrow \text { Clear span extending face to fave } f \text { glum }}$
columns $\& 0.65 \mathrm{~L}$,
$L_{1} \rightarrow$ Length of span in creation of mo
$L_{2} \rightarrow$ Length of span transverse to L_{2}

Distributuan of mamats
In interior span (IJ Y 56-PgJJ -31.4-3:2)
Negative design manent - 0.65 Mo
Positive in is $\quad-\quad 0.35 \mathrm{mo}_{0}$
Along colum strip and middle strip $\left(\begin{array}{l}1514.56 \\ 31.5 .51,31.5 .5 .3 \\ 31.5 .5 .4(8)\end{array}\right)$

Phoment - Colum strup	Midadle strip	
-ue	$-7 s /$. of totel the momet	Momet not resicted by colom
tve	60% of tutl the momet	"1

Creck for Shear

$$
\tau_{r}=\frac{v}{b_{o d}}\left(I 5 Y 56-P_{g} 57-31 \cdot 6 \cdot 2 \cdot 1\right)
$$

where V 오ear fore to be resisted
$b_{0}=$ Pheriphery of cutied section
$d=$ Effecture depth
Permissible shear stress $=k_{s} Z_{c} \cdot\left(35456-p_{j} 58-316 \cdot 3 \cdot 1\right)$
where $k_{5}=0.5+\beta_{C} \Rightarrow 1$ where $\beta_{C}=$ patien of shart te leng sile of column

$$
r_{k}=0.25 \sqrt{f_{2} k}
$$

Reinforeement

$$
M_{u}=0.87 f_{y} A_{s}+d\left[1-\frac{A_{s}+f_{y}}{b a f i c i c}\right]\left(\text { Isys } 6-P_{g} 969-1.1(b)\right)
$$

wheee $f_{y}=$ stiength of renforcament.
$d=$ Effetive depth
$A_{s t}=$ Area of tension reinforcement

$$
b=\text { width }
$$

$b=$ width
$f_{i}=$ Compressike stangth of concrete

Pb) Design an interior panel of a flat slab of size Sm $\times 5 \mathrm{~m}$ without providing drop and column heed. Sired column is $500 \times 500 \mathrm{~mm}$ and live load on the panel $4 \mathrm{kw} / \mathrm{m}^{2}$. Take floor -finishing load as $1 \mathrm{kN} / \mathrm{m}^{2}$.: Use : M20cancrete and Fey ls steel
Solution
Step 1-Thickness of slab
Drops are not provided, thickness is given by

$$
\frac{\text { Span }}{\text { Effecture depth }}=32 \times 0.9=28.8
$$

$$
\frac{s 000}{d}=288
$$

$$
\Rightarrow d=173.61 \mathrm{~mm} \simeq 175 \mathrm{~mm} \notin 125 \mathrm{~mm}\left(\frac{\pi}{456} P_{g 33}-3(21)\right.
$$

Overall depth $=d+$ cover $=175+25=200 \mathrm{~mm}$

Step 2 - Pard dimensions
Length of pard $=$ width of panel $=5 \mathrm{~m}$

$$
l_{1}=l_{2}=\mathrm{sm}
$$

width of column strip $=0.25 l_{2} \ngtr 0.25 l_{1}$ ($55456-P_{553}$)
$=0.25 \times 5=1.25 \mathrm{~m}$ on each side of colum s centre line
Width of middle strip $=l_{1}-1.25-1.25$

$$
=S-1.25-1.25
$$

Wear span, $l_{n}=5-\frac{0.5}{2}-\frac{0.5}{2}=4-5 m$

Step 3 - Loads
Self weight of slab $=0.20 \times 25 \mathrm{kN} / \mathrm{m}^{3}=5 \mathrm{kN} / \mathrm{m}^{2}$
Live lad

$$
=4 \mathrm{kN} / \mathrm{m}^{2}
$$

Finishing load

$$
=1 \mathrm{kN} / \mathrm{m}^{2}
$$

Total working load

$$
=10 \mathrm{kN} / \mathrm{m}^{2}
$$

Total factored loud $=1.5 \times 10=151 \mathrm{~N} / \mathrm{m}^{2}$
Step 4 Moments
Total moment, $M_{0}=\frac{W \ln }{8}\left(I 5 P_{5} 55-31.4 .2 .2\right)$
where $W=$ Design lard an area $\ell_{2} l_{n}$

$$
\left.\begin{array}{rl}
L_{2} & =\text { span in transverse durecton to l. } \\
l_{n}=\text { clear span } & =S_{1}-\frac{6 l}{2}-\frac{6 l}{2} \\
& =5-\frac{0.5}{2}-\frac{0.5}{2} \\
& =4.5 \mathrm{~m} \\
\therefore W & =15 \times 5 \times 4.5
\end{array}\right)=337.5 \mathrm{~kW} .
$$

The total design moment shall be distributed in foll. proportions, $\left({ }_{456} \mathrm{Pg} 55-31.4 \cdot 3 \cdot 2\right)$

$$
\begin{aligned}
& \text { Negative design moment }=0.65 \times 189.84=123.40 \mathrm{kNm} \\
& \text { Positive design manet }=0.35 \times 189.84=66.44 \mathrm{kNM}
\end{aligned}
$$

$$
\begin{aligned}
& 75,60 \\
& \text { column strip C } 15456 \text { - }
\end{aligned}
$$

The BM if distributed accoiss column strip (15 456$P_{y 57}-31.5 .5 .1+31.5 .5 .3$) and middle strip (75465 - P 57 $31.5 .5 \cdot 4(a))$ as below.

Moment Column Strip (kNm)	Middle Strip (kNm)	
the	$0.75 \times 123.40=92.55$	$0.25 \times 123.40=30.85$
the	$0.6 \times 66.44=39.86$	$0.4 \times 66.40=26.58$

Sheds for limiting moment

$$
\begin{aligned}
M_{\text {Glim }}= & 0.138 f \text { fee } b d^{2}(\text { sp.16-Pg } 10, \text { Table cor Fey 15) } \\
\text { where } & b=\text { width of Glumn strip }=25000 \mathrm{~mm} \\
& d=175 \mathrm{~mm} \\
& f_{c k}=20 \mathrm{Nhm2} \\
M_{\text {slim }}= & 0.138 \times 20 \times 2500 \times 175^{2}=2.113 \times 10^{6} \mathrm{Nmm}=211.31 \mathrm{kwm}
\end{aligned}
$$

All the moments are within limit, hence safe.
Step 5-Check for shear
(Is $456-\cos _{8} 57-3161$)
The critical section for shear is at a distance $d / 2$ 'f the clams face. Hence periphery of critical section arawn

$$
\begin{aligned}
\text { a column is square of sine } & =\text { column }+\frac{d}{2}+\frac{d}{2} \\
& \text { sine } \\
& =500+\frac{175}{2}+\frac{175}{2}: \cdots \\
& =675 \mathrm{~mm}
\end{aligned}
$$

Shear force to be resisted by ritual section
$=$ Total load - Load on square on panel are o

$$
\begin{aligned}
& =(15 \times 5 \times 5)-(15 \times 0.675 \times 0.675) \\
& v=368.17 \mathrm{kw}
\end{aligned}
$$

Shear force/m of privater $=(368.17) /(1 \times 0.675)$
Nominal shear stress, $r_{y}=\frac{V}{b_{0} d} \quad\left(I S y 56-P_{g} 57-31 \cdot(-2.1)\right.$

$$
=\frac{368.17 \times 10^{3}}{4 \times 675 \times 175}
$$

$$
\tau_{y}=0.78{\mathrm{~N} / \mathrm{mm}^{2}}^{2}
$$

Permissible shear steers $=k_{5} 2_{c}\left(15456-P_{5} 58-31 \cdot 6 \cdot 3 \cdot 1\right)$

$$
\begin{aligned}
k_{5} & =0.5+\beta_{c} \text { where } \beta_{C}=\frac{L_{1}}{L_{2}}=\frac{5}{5}=1 \\
& =0.5+1 \\
& =1.5 \gg 1 \\
\therefore c_{c_{5}} & =1.0
\end{aligned}
$$

$$
\begin{gathered}
r_{c}=0.25 \sqrt{f i k}=0.25 \times \sqrt{20}=1.12 \mathrm{~N} / \mathrm{mm}^{2} \\
k_{S} r_{c}=1.0 \times 1.12=1.12 \mathrm{~N} / \mathrm{mm}^{2} \\
r_{v}<k_{s} r_{c}
\end{gathered}
$$

Hace safe
Step 5- Reirforrements
(i) Clum strip

For -ve momat $M_{u}=92.55 \mathrm{kNm}$

$$
\begin{aligned}
& M_{a}=0.89 \mathrm{p} f_{y} A_{s t d}\left[1-\frac{A_{s s} f_{y}}{b_{a} f_{i c}}\right] \text { I5 } 556-16 y 96-a 1.1(b) \\
& \begin{aligned}
92.55 \times 10^{6} & =0.87 \times 415 \times A_{51} \times 175\left[\frac{1-A_{s f} \times 45}{2500 \times 175 \times 20}\right] \\
\text { Ast } & =1583.74 \mathrm{~mm}^{2} \quad
\end{aligned}
\end{aligned}
$$

Provide 12 mm dic bars, spacing $=\frac{2500 \times a_{s t}}{A_{s t}}$

$$
\begin{aligned}
& \text { Ast } \\
& =\frac{2800 \times \frac{\pi}{4} \times 12^{2}}{1583.74}=178.53 \\
& \mathrm{mmm}
\end{aligned}
$$

- Provide 12 mm dia bars at 175 mm clc

$$
\text { Ast proucded }=\frac{2500 \times a s t=\frac{2500 \times \frac{\pi}{4}}{125}}{\text { spacing }}+1615.68 \mathrm{~mm}
$$

For the moment, $M_{u}=39.86 \mathrm{kwm}$

$$
\begin{aligned}
39.86 \times 10^{6} & =0.87 \times 415 \times A_{5}+175 \times\left[1-\frac{A_{5}+415}{2500 \times 175 \times 20}\right] \\
A_{51} & =650.96 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide lomm dia bars, spacing $=\frac{2500 \times \frac{\pi}{4} \times 10^{2}}{650.96}=301.63 \mathrm{~mm}$ Spacing should be less then $3 d(3 \times 125)$ or $3000 m$ (I5 Pgy6

Provide comm bars at 300 mmcl .

$$
\text { As provided }=\frac{2500 \times \frac{\pi}{4} \times 6^{2}}{300}=65 \mathrm{~km}^{2}
$$

(ii) Middle strip

For -we mamet, Mut $=30.85 \mathrm{kwn}$ is for tue momat
$M_{u}=26.58 \mathrm{kwm}$ (Talking maximum)

$$
\begin{aligned}
30.85 \times 10^{6} & =0.87 \times 415 \times A_{S t} \times 175 \times\left[\frac{1-A_{S t} \times 455}{2500 \times 175 \times 20}\right] \\
A_{S t} & =500.12 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide clam dià bars, spacing $=\frac{2500 \times \frac{\pi}{4} \times 10^{2}}{500.12}=392 . \mathrm{mm}$
Provide 1 cmm dian
Provide lomm dis bars at $300 \mathrm{mmc} / \mathrm{c}$ in
Provided Ast $=2500 \times \frac{\pi}{4} \times 10^{2}=65 \mathrm{~cm}^{2}$
Since span is same in both 30 diction, provide similar of in both dater

P1) Design an interior panel of a flat slab with panel size $6 \times 6 \mathrm{~m}$ supported by colum of size $500 \mathrm{~mm} \times 500 \mathrm{~mm}$. Provide suitable drop. Take hive load as $4 \mathrm{k} / \mathrm{mm}^{2}$. Use mao grade connate and to 415 steel.
Solution
Skep 1 - Thickness of slab
Drops are provided, thickness is given by,
$\underline{\text { Span }}=32$
Effective depth

$$
\begin{aligned}
& \begin{array}{l}
\frac{6000}{d}=32 \\
\Rightarrow d=187.5 \mathrm{~mm} \bumpeq 190 \mathrm{~mm}(\text { I5 456-Pg S3 -31.2.1) } \\
\Rightarrow 125 \mathrm{~m}
\end{array} \\
& \text { overall depth }=190+30=220 \mathrm{~mm} \\
& \text { Depth of slab at drop }=220+50=270 \mathrm{~mm} \text {. }
\end{aligned}
$$

Stop 2.- Paial dimensions

$$
\text { Lengel of panel }=\text { Width of panel }=6 \mathrm{~m} \text {. }
$$

$$
l_{1}=l_{2}=6 \mathrm{~m}
$$

width of column strip $=0.25 l_{2} \neq 0.25 l_{1}$

$$
=0.25 \times 6
$$

$\because \frac{l_{1}=6 \mathrm{~m}}{1}=1.5 \mathrm{~m}$ on each side of colum s
 centre line

Width of middle strip $=6-1.5-1.5$

$$
=3 \mathrm{~m}
$$

Clear span, $l_{n}=$
3- Sire of drop

$$
\begin{aligned}
\text { Length of drop } & =\frac{1}{3} \times \text { Pard lath } \\
& =\frac{1}{3} \times 6
\end{aligned}
$$

However keep loath of drop equal to column strip $(3 \mathrm{~m})$
\therefore Provide drop of size $3 m \times 3 m$
Step 4 - heads
Self weight of slab $=0.27 \times 25=6.75 \mathrm{~kW} / \mathrm{m}^{2}$
line lard
Finishing load
Total working load

$$
\text { Total factored load }=1.5 \times 11.75=17.63 \mathrm{kw} / \mathrm{m}^{2}
$$

Step 5-Moments
Total manet, $M_{0}=\frac{W l_{n}}{8}$
where $w=$ Design lead on area $l_{2} l n$

$$
\begin{aligned}
l_{n} & =6-\frac{0.5}{2} \div \frac{0.5}{2}=5.5 \mathrm{~m} \\
w & =17.63 \times 6 \times 5.5 \\
& =581.79 \mathrm{kN}
\end{aligned}
$$

Total monet, $M_{0}=\frac{581.79 \times 5.5}{8}=399.98 \simeq 400 \mathrm{kN}$

In interior span, the total design monet shall be distributed in foll. proportions (Is $456 \mathrm{Pg} 55-31.4 .3 .2$)

Negative design moment $=0.65 \times 400=260 \mathrm{kNm}$
Positive design monet $=0.35 \times 400=140 \mathrm{kNm}$
The BM is distributed across column strip (I5 1.56
Pg 57 -31.5.5.1 +31.5 .5 .3) and middle strip (I5 $456-$ PY57. $31.5 \cdot 5.4(9))$ as below,

Moment	Column Strip (kim)	Middle Strip (km)
-we	$0.75 \times 260=195$	$0.25 \times 260=65$
the	$0.6 \times 140=84$	$0.4 \times 140=56$

Check for limiting moment

$$
\text { Mulem }=0.138 \text { file bd }{ }^{2} \text { (S P16-Pg10, Table C for Fe415) }
$$

where $b=$ width of 6 lumn strip $=3000 \mathrm{~mm}$

$$
\begin{aligned}
& d=270-30=240 \mathrm{~mm} \\
& M_{u l i m}=0.138 \times 20 \times 3000 \times 240^{2}=4.769 \times 10^{8} \mathrm{NmM} \\
&= 476.928 \mathrm{kNM}
\end{aligned}
$$

All the moments are within limit, hence safe.
Stepb-Checla for shear
The critical section for shear is at a distance $d l_{2}^{\prime}$ from the column face. Hence pheriphery of critical sections around $\frac{a}{H d_{2}}$ column is square of size $=\frac{\text { colum }}{\text { size }}+\frac{d}{2}+\frac{d}{2}$

$$
\begin{aligned}
& \text { site } \\
& =500+\frac{240}{2}+\frac{2 y 0}{2} \\
\text { Shear force to be resisted }=\text { Total load on } & =740 \mathrm{~mm} \\
& \text { l. } 1 .
\end{aligned}
$$

by ritual section

$$
=625.026 \mathrm{~kJ}
$$

Nominal shear stress, $\bar{z}_{V}=\frac{v}{b_{0} d}\left(I 5 Y 56-P_{y} 57-31 \cdot 6.2 .1\right)$

$$
\begin{aligned}
& =\frac{625.026 \times 10^{3}}{4 \times 740 \times 240} \\
r_{y} & =0.188 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Permissible shear stress $=k_{c} z_{c}$ (IF $\left.456-\operatorname{Pg} 58-31 \cdot 6 \cdot 311\right)$

$$
\begin{aligned}
& c_{c}=0.5+\beta c \text { where } \quad c_{c}=\frac{L_{1}}{c_{2}}=\frac{6}{6}=1 \\
&=0.5+1 \\
&=1.5 \ngtr 1 \\
& c_{c}=1 \\
& c_{c}=0125 \sqrt{f_{c l}}=0125 \sqrt{20}=1.12 \mathrm{~N} / \mathrm{mm}^{2} \\
& c_{c_{s}} \tau_{c}=1 \times 112=1.12 \mathrm{~N} / \mathrm{mm}^{2} \\
& \tau_{v}<k_{s} \tau_{c}
\end{aligned}
$$

Hance safe.
Step 7 - Reinforcemats
(i) Column strip

For - hue monet, $M_{u}=195 \mathrm{kNm}, d=240 \mathrm{~mm}$.

$$
\begin{aligned}
& M_{u}=0.87 f_{y} A_{s t d}\left[1-\frac{A_{s t} f_{y}}{b d f_{l l}}\right] \\
& 195 \times 10^{6}=0.87 \times 415 \times A_{s t} \times 240 \times\left[\begin{array}{c}
1-\frac{A_{s t} \times 415}{3060 \times 240 \times 20}
\end{array}\right] \\
& A_{s t}=2419.023 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 12 mm dir bars, spacing $=\frac{3000 \times \frac{\pi}{4} \times 12^{2}}{2419.023}=140.26 \mathrm{~mm}$
Provide 12 mm din @ 140 mm ck

$$
\text { Provided Pst }=\frac{3000 \times \frac{\pi}{4} \times 12^{2}}{140}=2423.514 \mathrm{~mm}^{2}
$$

For the moment; $M_{4}=84 \mathrm{kom}, d=190 \mathrm{~mm}$

$$
\begin{aligned}
84 \times 10^{6} & =0.87 \times 415 \times A_{5} \times 190 \times\left[1, \frac{A_{5}+415}{3000 \times 190 \times 20}\right] \\
A_{5 t} & =1284.569 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 10 mm die bars, spacing $=\frac{3000 \times \frac{\pi}{4} \times 10^{2}}{1284.569}=183-42 \mathrm{~mm}$
Provide 10 mm die @180 mm ck.

$$
\text { Provided Ast }=\frac{3000 \times \frac{\pi}{4} \times 10^{2}}{180}=1308.997 \mathrm{~mm}^{2}
$$

(ii) Middle strip

For we moment, $M_{u}=65 \mathrm{kJM}, d=190 \mathrm{~mm}$ (there is no drop)

$$
\begin{gathered}
65 \times 10^{6}=0.87 \times 415 \times A_{5} \times 190 \times\left[1-\frac{A_{S}+415}{3000 \times 190 \times 20}\right] \\
A_{S E}=982.682 \mathrm{~mm}^{2}
\end{gathered}
$$

Provide 10 mm die bars, spacing $=\frac{3000 \times \frac{\times 1}{4} \times 10^{2}}{982.682}=239.77 \mathrm{~mm}$ Provide comm dia bars at 230 mm dc

$$
\text { Provided Pst }=\frac{3000 \times \frac{\pi}{4} \times 10^{2}}{230}=1024.402 \mathrm{~mm}^{2}
$$

For the moment, $M_{u}=56 \mathrm{kum}, d=19 \mathrm{~cm}$ (there is no drop)

$$
56 \times 10^{6}=0.87 \times 415 \times A_{52} \times 190 \times\left[\frac{1-A_{51} \times 415}{3000 \times 190 \times 20}\right]
$$

$$
A_{s t}=842 \cdot 15 \mathrm{~mm}^{2}
$$

Provide lo mm dia bars, spacing $=\frac{300 u \times \frac{\pi}{4} \times 10^{\circ}}{842.15}=279.783 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Provide spacing, Provided } A_{S t} \\
& \text {, }=\frac{3000 \times \frac{\pi}{4}}{270} \times\left(0^{2}=872.665 \mathrm{~mm}^{2}\right. \text {, }
\end{aligned}
$$

$$
\frac{\text { column Strip, Middle Strip, Glum strip }}{3 \mathrm{~m}} \frac{3 \mathrm{~m}}{3 \mathrm{~m}}
$$

$$
\cdots T_{o p}
$$

- Bottom

Plan.

Section along $c_{1} c_{2}$ (Gluon Stoup)

Section along $M_{1} M_{2}\left(M_{i d d l e}^{500 m}\right.$ SNip)

Pb) Design the interior panel of a flat slab $5.6 \mathrm{~m} \times 6.6 \mathrm{~m}$ in size, for a superimposed load of $7.75 \mathrm{kN} / \mathrm{m}^{2}$. Provide two way reinforcement. Use M20 concrete and Fe y is steel. Use mao concrete and Fe y15 steel.
Solution
Step 1 - Thickness of Stab
Drops are provided, thickness is given: by,
Span

$$
=32
$$

Effective depth
Talking maximum dimension, $\frac{6600}{d}=32$

$$
d=206.25 \mathrm{~mm} \simeq 210 \mathrm{~mm}
$$

Overall depth $=d+$ cover $=210+15=225 \mathrm{~mm}$
Depth of slab at drop $=225+50=275 \mathrm{~mm}$.
Stop. 2 - Panel dimensions
Length of panel, $L=l_{1}=6.6 \mathrm{~m}$; with of pal, $B=l_{2}=5.6 \mathrm{~m}$
Along length
width of column strip $=0.25 l_{2} \ngtr 0.25 l_{1}$

$$
=0.25 \times 5.6 \ngtr 0.25 \times 6.6
$$

$=1.4 \mathrm{~m}$ on either side of

- colum a centre line.
with of middle strip $=6.6-1.4-1.4=3.8 \mathrm{~m}$
Alone width
width of colum. strip $=0.25 l_{2} \ngtr 0.25 l_{1}$

$$
=0.25 \times 6.6 \ngtr 0.25 \times 5.6
$$

$=1.4 \mathrm{~m}$ on either side of column ait g line
width of middle strip $=5.6-1.4-1.4$

Stop 3 - Sine of drop
Along length
Length of drop $=\frac{1}{3} \times$ Panel legal $=\frac{1}{3} \times 6.6=2.2 \mathrm{~m}$.
However keep length of drop equal to colum strop (2.inc)
\therefore Provide drop of site $2.8 \mathrm{~m} \times 2.8 \mathrm{~m}$
Along width
Length of drop $=\frac{1}{3} \times$ Pond length $=\frac{1}{3} \times 5.6=1.867 \mathrm{~m}$
However keep length of drop equal te column strip (2.8n),
\therefore Provide drop of size $2.8 \mathrm{~m} \times 2.8 \mathrm{~m}$
Stop 4-Loads
Self wright of sled $=0.275 \times 25=6.875{\mathrm{kN} / \mathrm{m}^{2}}^{2}$
Like load $\quad=7.75 \mathrm{kN}^{2}$.

Total working lad $=14.625 \mathrm{kN} / \mathrm{m}^{2}$
Total factored blood $=1.5 \times 1.4 .625=21.94 \mathrm{kw}^{2}$
Step 5 - Moments along longer span
Lat the column have a column head of diameter one fifth of average span.

Average span $=\frac{1}{2}(1+B)=\frac{1}{2}(6.6+5.6)=6.1 \mathrm{~m}$
Column heed $=\frac{1}{5} \times 6.1=1.22 \mathrm{~m}$, Assume height of colum e Total moment, $M_{0}=W R_{n} \mid$ head as 500 mm , column diameter as you rm where $w=$ Design lead on area $l_{2} \ln e$.

Equivalent square, $a^{2}=\frac{\pi}{4} d^{2}$

$$
\begin{aligned}
& a^{2}=\frac{\pi}{4} \times 1.22^{2} \\
& a=\sqrt{\frac{\pi}{4} \times 1.22^{2}} \\
& a=1.08 \mathrm{~m} . \\
& Q_{n l}=6.6-\frac{1.08}{2}-\frac{1.08}{2}=5.52 \mathrm{~m} \\
& w=21.94 \times 5.6 \times 5.52 \\
&= 678.21 \mathrm{~kW}
\end{aligned}
$$

Total moment, $M_{0}=\frac{678.21 \times 5.52}{8}=467.96 \mathrm{kNm}$
In interior span, the total design moment shall be distributed in foll proportions (I5 156 Py55-31.4.3.2)
Negative design manat $=0.65 \times 467.96=304.17 \mathrm{kwm}$
Positive design moment $=0.35 \times 467.96=163.79 \mathrm{~km}$
The BM 15 distributed across column strip (IS 456
Py.57-31.5.51, 31.5.5.3) and middle strip (I5 4.56-Py57-31.5.5 ya)
as below,

Moment Column Strip (kNm)	Middle strip $(1 \mathrm{wNM})$	
we	$0.75 \times 304 \% 17=228.13$	$0.25 \times 304.77=76.04$
the	$0.6 \times 163.79=98.27$	$0.4 \times 163.79=65.52$

Stop 6-Maneats along shorter span
Trial monet, $M_{0}=\frac{W l_{n}}{8}$
Where $w=$ Design load on area $l_{1} l_{n_{b}}$.

$$
\begin{aligned}
l_{n} & =l_{2}-\frac{1.08}{2}-\frac{108}{2} \\
& =5.6-\frac{1.08}{2}-\frac{1.08}{2} \\
& =4.52 \mathrm{~m} \\
\therefore \omega & =21.44 \times 6.6 \times 4.52 \\
& =654.51 \mathrm{~kW}
\end{aligned}
$$

Total moment, $M_{0}=\frac{654.57 \times 4.52}{8}=369.8 \mathrm{kNm}$
Design moment is distributed as,

$$
\begin{aligned}
& \text { Negative design monent }=0.65 \times 369.8=240.371 \mathrm{~km} \\
& \text { Patti. docicn }
\end{aligned}
$$

Postie design manat $=0.35 \times 369.8=129.43 \mathrm{kwm}$
Monet distribution across column and middle strip,

| Manat Column Strip (Km) Middle Strip (kN)
 -he $0.75 \times 240.37=180.28$ $0.25 \times 240.37=60.09$
 the $0.6 \times 129.43=77.66$ $0.4 \times 129.43=57.77$ |
| :--- | :--- | :--- |

Check for limiting moment

$$
\text { Mulim }=0.138 \mathrm{fachel}^{2}
$$

Where $b=$ width of celom strip $=2800 \mathrm{~mm}$

$$
\begin{aligned}
& d=275-15=250 \mathrm{~mm} \\
& \text { Mulim }=0.138 \times 20 \times 2800 \times 250^{2}=4.83 \times 10^{8} \mathrm{NMM} \\
&=483 \mathrm{kmm}, \text { Here off }
\end{aligned}
$$

Step 7-Check for sheer
The cortical section for shear is at a distance d_{2} from face of drop. Hence pheriphery of... $I l_{1 / 2}$ critical section is square of

$$
\begin{aligned}
\text { Size } & =2800+\frac{d}{2}+\frac{d}{2} \\
& =2800+\frac{250}{2}+\frac{250}{2} \\
& =3050 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{array}{r}
\text { Shear force to be resisted = Sher force on pard - Shear fork e } \\
\text { on square } \\
\text { area } \\
=(21.94 \times 6.6 \times 5.6)-(21.94 \times 3.05 \times 3.05) \\
=606.806 \mathrm{kN}
\end{array}
$$

Nominal shear stress, $\tau_{y}=\frac{V}{b_{0} d}$

$$
\begin{aligned}
& =\frac{606.806 \times 10^{3}}{4 \times 3050 \times 250} \\
z_{r} & =0.199 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Permissible shear stress $=k_{s} 2 c$

$$
\begin{aligned}
& k_{5}=0.5+\beta c \text { where } B_{C}=\frac{L_{1}}{c_{2}}=\frac{6.6}{5 \cdot 6}=1.179 \\
& k_{5}=0.5+1.179=1.679 \not p 1 \\
& \therefore k_{5}=1, \bar{a}_{c}=0.25 \sqrt{F_{c}}=0.25 \times \sqrt{20}=1.12 \mathrm{~N} / \mathrm{mm}^{2} \\
& k_{5} z_{c}=1 \times 1.12 \\
&=1.12 \mathrm{~N} \mathrm{~mm}^{2} \\
& z_{v}<k_{s} z_{c}
\end{aligned}
$$

Hence safe
The cirticel section is at a distance d/2 from columan head.

$$
\begin{aligned}
\text { Diameter } & =1.22+\frac{0.25}{2}+\frac{0.25}{2} \\
& =1.45 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Shear fora to be resisted }= & (21.94 \times 6.6 \times 5.6)- \\
& \left(21.94 \times \frac{\pi}{4} \times 1.45^{2}\right) \\
& =774.673 \mathrm{kw}
\end{aligned}
$$

Naming shear stress, $\tau_{r}=\frac{v_{c}}{b_{0 d}}$
Where $b_{0}=$ circumference $=\pi \times d=\pi \times 1.45$

$$
\begin{aligned}
\therefore 7_{y} & =\frac{774.673 \times 10^{3}}{1 \times 1.45 \times 15^{3} \times 250} \\
& =0.68 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{ck} \mathrm{ck}_{5} \mathrm{c}_{\mathrm{c}}
\end{aligned}
$$

Step 8 - Reinforcement along longer span
(i) Column strip

For - u_{e} monet, $M_{u}=228.13 \mathrm{kcm}, d=225 \mathrm{~mm}, b=2800 \mathrm{~mm}$

$$
\begin{aligned}
& M_{u}=0.87 f_{y} A_{01} \text { d }\left[1-\frac{f_{y} A_{0} t}{b d f_{c k}}\right] \\
& 228.10 \times 10^{6}=0.87 \times 415 \times \text { At } \times 225 \times\left[1-\frac{415 \times A t}{2800 \times 225 \times 20}\right] \\
& A_{s t}=3131.14 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 12 mm dia bar, spacing $=\frac{2800 \times \frac{\pi x}{4} \times 12^{2}}{3131}=163.956 \mathrm{~mm}$
Provide 12 mm dial bars @. 16 omm dc

$$
\text { Provided At }=\frac{2800 \times \frac{\pi}{4} \times 12^{2}}{160}=3208.564 \mathrm{~mm}^{2}
$$

For the monet, $M_{u}=98.27 \mathrm{kNm}, d=20 \mathrm{~mm}, b=2800 \mathrm{~mm}$

$$
\begin{aligned}
98.27 \times 10^{6} & =0.87 \times 415 \times A_{s}+210 \times\left[1-\frac{415 \times A t}{2800 \times 210 \times 20}\right] \\
A_{s t} & =1361.503 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide lam die bars, spacing $=\frac{2800 \times \frac{\pi}{4} \times 10^{2}}{1361.503}=161.52 \mathrm{~mm}$
Provide lo mm dir bars @ 160 mm ck

$$
\text { Provided AsL }=\frac{2800 \times \frac{\pi}{4} \times 10^{2}}{160}=1374.447 \mathrm{~mm}^{2}
$$

(ii) Middle strip

For -he manat, $M_{u}=76.04 \mathrm{kwm}$ and for the moment,

$$
\begin{aligned}
& M_{u}=65.52 \mathrm{kNm}, d=210 \mathrm{~mm}, \quad b=2800 \mathrm{~mm} \\
& 76.04 \times 10^{6}=0.87 \times 415 \times A_{s} \times 210 \times\left[\frac{1-415 \times A_{S} t}{2800 \times 210 \times 20}\right] \\
& A_{S t}=1041 \cdot 148 . \mathrm{mm}^{2}
\end{aligned}
$$

Provide comm die bars, spacing $=\frac{2800 \times \frac{\pi}{4} \times 10^{2}}{104 \mathrm{I} \cdot 148}=211.22 \mathrm{~mm}$
Provide lome dial bars@20omnck

$$
\text { Att provided }=\frac{2800 \times \frac{\pi}{4} \times 10^{2}}{200}=1099.56 \mathrm{~mm}^{2}
$$

Step 9-Meirforcemet along short span
(i) Colum strip

For the mamet, $M_{u}=180.28 \mathrm{~km}, d=225 \mathrm{~mm}, b=2800 \mathrm{~mm}$

$$
\begin{aligned}
180.28 \times 10^{6} & =0.87 \times 415 \times 25 \times\left[\frac{1-415 \times A \mathrm{At}}{2800 \times 225 \times 00}\right] \\
A_{s t} & =2410.6 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 12 mm die bars, spacing $=\frac{2800 \times \frac{\pi}{4} \times 12^{2}}{2 Y 10.6}=131.367 \mathrm{~mm}$
Provide 12 mm dian Provide 12 mm diag bars@130mm ck .

$$
\text { As provided }=\frac{2800 \times \frac{\pi}{4} \times 12^{2}}{130}=2435.94 \mathrm{Jm}^{2}
$$

For the monet, $\mu_{u}=77.66 \mathrm{kNm}, d=210 \mathrm{~mm}, b=2800 \mathrm{~mm}$

$$
\begin{aligned}
77.66 \times 10^{6} & =0.87 \times 415 \times 210 \times A_{51} \times\left[1-\frac{415 \times A_{t}}{2800 \times 210 \times 20}\right] \\
A_{s t} & =1064.229 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide comm dian bars, spacing $=\frac{2800 \times \frac{\pi}{4} \times 10^{2}}{1064.229}=206639 \mathrm{~mm}$
Provide comm dian @roomack,
Provide comm dia@roumucle,
Astr provided $=\frac{2800 \times \frac{\pi}{4} \times 10^{2}}{200}=1099.56 \mathrm{~mm}^{2}$
(ii) Middle Stoup

For tue moment, $M_{u}=60.09 \mathrm{kum}$ and the moment, $m_{u}=51.77 \mathrm{~km}$

$$
\begin{aligned}
& d=21 \mathrm{gmm}, \quad b=2800 \mathrm{~mm} \\
& 60.09 \times 10^{6}=0.87 \times 415 \times A_{s}+210 \times\left[1-\frac{415 \times A_{s}}{2800 \times 210 \times 20}\right] \\
& A_{S t}=816.029 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide lo nam dia bars, spacing $=\frac{2800 \times \frac{\pi}{4} \times 10^{2}}{.816 .029}=269.49 \mathrm{~mm}$
Provide 10 mm die bars at 26 amm ck

$$
\text { Att provided }=\frac{2800 \times \frac{\pi}{4} \times 10^{2}}{9}=845.813 \mathrm{~mm}^{2}
$$

Section along column strip ($\left.C_{1 l}, C_{2 l}\right)$-longer span

Section along middle strip $\left(M_{1}, M_{2 l}\right)$ - longer span

Ex No. 6
 RCC DECK SLAB (or) SLAB CULVERT

DATE:

AIM

Design a RCC culvert for a national highway to suit following data carriage way $=7.5 \mathrm{~m}$ wide, foot path $=1 \mathrm{~m}$ on either side, clear span $=7 \mathrm{~m}$ take loading IRC class AA tracked vehicle. Sketch the details of reinforced in the longitudinal and cross section of the slab.

DESIGN DATA

Clear span $=7 \mathrm{~m}$
Wearing coat $=80 \mathrm{~mm}$ thk (Assume)
Width of carriage way $=7.5 \mathrm{~m}$ (2 lane)
Width of foot path $=1 \mathrm{~m}$ (on either side)
Grade - M25 \& Fe 415
Codes - IS 456 \& IRC 21

Step 1 - Permissible stresses

Permissible flexural compressive stress, $\sigma_{\mathrm{cb}}=8.33 \mathrm{~N} / \mathrm{mm}^{2}$ (IS $21-2000$, Table 9)
Permissible stress in steel, $\sigma_{\mathrm{st}}=200 \mathrm{~N} / \mathrm{mm}^{2}(($ IS $21-2000$, Table 10)
$\mathrm{m}=280 / 3 \sigma_{\mathrm{cbc}}=280 /(3 * 7)=11.2$
$\mathrm{k}=1 /\left[1+\left(\sigma_{\mathrm{st}} / \mathrm{m} \sigma_{\mathrm{cbc}}\right)\right]=0.32$
$\mathrm{j}=1-\mathrm{k} / 3=0.89$
$\mathrm{Q}=0.5 \sigma_{\mathrm{cbc}} \mathrm{kj}=1.19$

Step 2 - Depth of slab

Deck slab thk $=80 \mathrm{~mm} / \mathrm{m}$ of span $=80 * 7=560=600 \mathrm{~mm}$
Effective thk $=600-25-(25 / 2)=562.5 \mathrm{~mm}$
Width of bearing $=400 \mathrm{~mm}$

Effective span

c / c of support $=7+0.4=7.4$
Clear span $+d=7+0.5625=7.5625$
Effective span $=7.4 \mathrm{~m}$

Step 3 - Dead Load BM \& SF

Self weight of slab $=0.6 * 25=15 \mathrm{kN} / \mathrm{m}^{2}$

Self weight of wearing coat $=0.08 * 22=1.76 \mathrm{kN} / \mathrm{m}^{2}$
Total DL $=16.76 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{DL} \mathrm{BM}=\mathrm{Wl}^{2} / 8=114.722 \mathrm{kNm}$
$\mathrm{DL} \mathrm{SF}=\mathrm{Wl} / 2=62.012 \mathrm{kN}$

Step 4 - Live Load BM

Effective length

Effective length $=3.6+(2 *(0.6+0.08))=4.96$
Effective width
Effective width, $b_{e}=k x(1-x / L)+b_{w}$
Maximum BM occurs at centre of span, $x=7.4 / 2=3.7 \mathrm{~m}$
$\mathrm{L}=7.4 \mathrm{~m}, \mathrm{~B}=7.5+1+1=9.5 \mathrm{~m}$, For $\mathrm{B} / \mathrm{L}=1.284, \mathrm{k}=2.707$ (IRC 21, Pg $53-$ Simply supported slab)
$\mathrm{b}_{\mathrm{w}}=$ Wheel base $+(2 *$ wearing coat $)=0.85+(2 * 0.08)=1.01 \mathrm{~m}$
Substituting the values, Effective width, $b_{e}=6.018 \mathrm{~m}$

Net Effective width $=2.625+2.05+(6.018 / 2)=7.684 \mathrm{~m}$

Load

Load for IRC class AA tracked vechicle $=700 \mathrm{kN}$
Impact factor for 7.4 m span $=16 \%(\operatorname{IRC} 6-\operatorname{Pg} 16)$
Load with impact $=700 * 1.16=812 \mathrm{kN}$
Average intensity of load $=812 /(7.684 * 4.96)=21.305 \mathrm{kN} / \mathrm{m}^{2}$

Bending Moment

Total downward load $=21.305 * 4.96=105.673 \mathrm{kN}$
Reaction $=105.073 / 2=52.537 \mathrm{kN}$
BM @ centre $=(52.537 \times 3.7)-(21.305 \times 2.48 \times(2.48 / 2))=128.87 \mathrm{kNm}$

Step 5 - Live Load SF

Effective length

Effective length $=3.6+(2 *(0.6+0.08))=4.96$

Effective width

Effective width, $\mathrm{b}_{\mathrm{e}}=\mathrm{kx}(1-\mathrm{x} / \mathrm{L})+\mathrm{b}_{\mathrm{w}}$
Maximum SF occurs at support, $x=4.96 / 2=2.48 \mathrm{~m}$
$\mathrm{L}=7.4 \mathrm{~m}, \mathrm{~B}=7.5+1+1=9.5 \mathrm{~m}$, For $\mathrm{B} / \mathrm{L}=1.284, \mathrm{k}=2.707($ IRC $21, \operatorname{Pg} 53-$ Simply supported slab)
$\mathrm{b}_{\mathrm{w}}=$ Wheel base $+\left(2^{*}\right.$ wearing coat $)=0.85+\left(2^{*} 0.08\right)=1.01 \mathrm{~m}$
Substituting the values, Effective width, $\mathrm{b}_{\mathrm{e}}=5.473 \mathrm{~m}$

Net Effective width $=2.625+2.05+(5.473 / 2)=7.412 \mathrm{~m}$
Load
Load for IRC class AA tracked vechicle $=700 \mathrm{kN}$
Impact factor for 7.4 m span $=16 \%$ (IRC $6-\operatorname{Pg} 16)$
Load with impact $=700 * 1.16=812 \mathrm{kN}$
Average intensity of load $=812 /(7.412 * 4.96)=22.087 \mathrm{kN} / \mathrm{m}^{2}$

Shear force

Total downward load $=21.305 * 4.96=105.673 \mathrm{kN}$
Reactions $\mathrm{R}_{\mathrm{B}}=36.715 \mathrm{kN} \& \mathrm{R}_{\mathrm{A}}=72.837 \mathrm{kN}$
SF @ support=72.837 kN

Step 6 - Design of deck slab

Main reinforcement

Total Moment $=$ Dead load moment + Live load moment $=114.722+128.87=243.592 \mathrm{kNm}$
Hence safe
Provide 25 mm dia bars, $\mathrm{S}=\left[1000^{*}(\mathrm{p} / 4) * 25^{2}\right] / 2432.879=201.767 \mathrm{~mm}$
Provide 25 mm dia bars at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}\left(\mathrm{A}_{\mathrm{st}}=2454.369 \mathrm{~mm}^{2}\right)$

Distributor reinforcement

Total Moment $=0.3 \mathrm{M}_{\mathrm{L}}+0.2 \mathrm{M}_{\mathrm{D}}=(0.3 \times 128.87)+(0.2 \times 114.722)=61.605 \mathrm{kNm}$

Provide 12 mm dia bars, $\mathrm{S}=\left[1000^{*}(\mathrm{p} / 4)^{*} 12^{2}\right] / 615.281=183.814 \mathrm{~mm}$
Provide 12 mm dia bars at $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}\left(\mathrm{A}_{\mathrm{st}}=628.319 \mathrm{~mm}^{2}\right)$

Step 7 - Check for shear stress

Total Shear $=$ Dead load shear + Live load shear $=62.012+72.837=134.849 \mathrm{kN}$
Permissible shear stress for slabs without shear reinforcement is given as
$\mathrm{k}_{1}=1.14-0.7 \mathrm{~d} \geq 0.5$

$$
=1.14-(0.7 \times 0.5625)=0.746
$$

$\mathrm{k}_{2}=0.5+0.25 \mathrm{p} \geq 1$
$\mathrm{k}_{2}=0.5+(0.25 \times 0.436)=0.609 \geq 1=1$
Hence
Also, hence provide minimum shear reinforcement.
Minimum shear reinforcement is given by $\mathrm{A}_{\mathrm{sv}} /\left(\mathrm{b}^{*} \mathrm{~S}_{\mathrm{v}}\right)=0.4 /\left(0.87 * \mathrm{f}_{\mathrm{y}}\right)$

Provide 2 legged 10 mm dia stirrups at $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

Step 8 - Design of kerb

Assuming depth of kerb above deck slab as 300 mm , total depth $=300+562.5=862.5 \mathrm{~mm}$ At bottom,

Provide 4 No's of 25 mm dia $\left(\mathrm{A}_{\mathrm{st}}=1963.495 \mathrm{~mm}^{2}\right)$
At top, $\mathrm{A}_{\mathrm{st}}=0.12 \% \mathrm{bd}=(0.12 / 100) \times 1000 \times 300=360 \mathrm{~mm}^{2}$
Provide 4 No's of 12 mm dia $\left(\mathrm{A}_{\mathrm{st}}=482.389 \mathrm{~mm}^{2}\right)$

LONGITUDINAL SECTION OF RC DECK SLAB

Unit II-Lianid Storage structures
RCC water tanks -on ground, elevated circular, underground Rectangular Tanks - Hemispherical Bottomed steel water Tank- Design and Drawing
I) Concrete Water Tanks

Tanks resting on grand

1) Rectangular water Tank with $U B$ rato >2
2) Rectangulese water Tank with $U B$ rate $\angle 2$
3) Circular water Tank with open top (fixed base)
4) Circular water Tar with open top (flexible base)
5) Circular waster Tend with domicel top and flat base supported on masonry lover (flex 166 basie)
6) Circular water tank with doomed bottom and to v

Tanks resting ondagreound

1) Rechangilas water tank

Fileuated water tanles

1) Intro type water tank
2) Circular water tank
II) Steel water tanks
3) Hemispherical battened steel water tank

Design the sidewalls of a rectangular reinforced concrete water tank of dimensions 6 m by 2 m and having a maximum depth of 215 m , using mao grade concrete and Fe 415 HYSD bars
Give
Rectangular wT with $4 / B>2$
Sire of tank, $L \times B=6 m \times 2 m$
on ground
Depth of tank, $H=2.5 \mathrm{~m}$
Materials - Moo grade concrete and Fey 15 1 H XOD bars
Solution
Stop 1 - Permissible Stoss
From .75456 -2000 - Table 21,
Permissible stress in deject compression, $\sigma_{c c}=5 N / \mathrm{mm}^{2}$
Permissible stress in bending compression, $\sigma \mathrm{cc}=7 \mathrm{Nmm}^{2}$
Permissible stress in steed, $\sigma_{s t}=0.6 f y=0.6 \times 250$

$$
\begin{aligned}
& M=280=\underline{280}=13.33 \quad=150{\mathrm{~N} / \mathrm{mm}^{2}}^{3 \times 7} \\
& m=\frac{280}{30 c h c}=\frac{280}{3 \times 7}=13.33 \\
& k=\frac{1}{1+\frac{\sigma_{s t}}{M \sigma_{c b c}}}=\frac{1}{1+\frac{150}{13.33 \times 7}}=0.38 \\
& j=1-\frac{k}{3}=1-\frac{0.38}{3}=0.87 \\
& Q=0.5 \sigma_{c b c} l_{j}=0.5 \times 7 \times 0.38 \times 0.87=1.16
\end{aligned}
$$

Step 2 - Dimensions of tank
$L=6 m$ and $B=2 n$
Rate o $|B=6| 2=3>2$
Long walls are designed as vertical cantuluers fixed at base and short walls are designed as horizontal slabs between lang walls. These horizatal sods bend horizontally.
Step 3 - Design of side walls (Vertical eft)

$$
\begin{aligned}
& \text { Maximum } B M \text { in long wells }=\left[\frac{1}{2} \omega H \times H\right] \times \frac{H}{3} \\
&=\frac{61 H^{3}}{6} \\
&=\frac{10 \times 2.5^{3}}{6} \\
& M_{L}=26.04 \mathrm{kwm} \\
& M=Q b d^{2} \\
& 26004 \times 10^{6}=1.16 \times 1000 \times d^{2} \\
& \Rightarrow d \quad=149.83 \mathrm{~mm}
\end{aligned}
$$

Adopt effective depth, $d=150 \mathrm{~mm}$
Overall depth, $D=d+$ cover $=150+30=180 \mathrm{~mm}$

$$
A_{s 1}=\frac{m}{\sigma_{s t j}}=\frac{26.04 \times 10^{6}}{150 \times 0.87 \times 150}=1330.27 \mathrm{~mm}^{2}
$$

Provide 16 mm diameter bars, spacing $=\frac{b x a s t}{A_{s} t}$

$$
\begin{aligned}
& =\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{1330.27} \\
& =151.14 \mathrm{~mm}
\end{aligned}
$$

Provide 16 mm dianneter bars at 150 mmch as verticel eifprenat (Ast provided $=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{150}=1340.41 \mathrm{~mm}^{2}$)
Step 4 - Desgn of long wells (horizantel reiffrrenat)
Intenstly \& wder pressure, $p=w(1+-h)$ where
$h=11 / 4$ or 1 m whichewes is greeter

$$
\begin{aligned}
h & =2.514(0 r) 1 \mathrm{~m}= \\
& =0.63(007.1 \mathrm{~m} \\
\therefore h & =1 \mathrm{~m}
\end{aligned}
$$

Inlasity, $P=10(2.5-1)=15 \mathrm{kN/m}{ }^{2}$
Direct tension in log wall, $T_{x}=\frac{P B}{2}=\frac{15 \times 2}{2}=15 \mathrm{kw}$

$$
A_{s 1}=\frac{T_{x}}{\sigma_{s t}}=\frac{15 \times 10^{3}}{150}=100 \mathrm{~mm} 2^{2}
$$

Min $A t=0.31 . D D=\frac{0.3}{100} \times 1000 \times 180=54 \mathrm{am}^{2}=270 \mathrm{~mm}^{2} 01 \mathrm{eadh}$ Providing lamn duametes bars,

$$
\begin{aligned}
\text { Spacing }=\frac{b_{x} \text { ast }}{\text { Ast }} & =\frac{1000 \times \frac{\pi}{4} \times 0^{2}}{270} \\
& =290.89 \mathrm{~mm}
\end{aligned}
$$

Pruide 10 mm duaneter bars at 280 mm ch on both faces of lorg will in horizantal directen.
Stap 5- Desgn of short wall (horizantal reifficemet)
Dired tension in shast wall $=P \times 1$ (perm)

$$
\begin{aligned}
& =15 \times 1 \\
T_{y} & =15 \mathrm{kw}
\end{aligned}
$$

Bending monen, $M=\frac{P B^{2}}{12}$ where $B=2 n+\frac{0.18}{2}+\frac{0.18}{2}$ (cle)

$$
\begin{aligned}
& B=2.18 \mathrm{~m} \\
& M=\frac{15 \times 2.18^{2}}{12}=5.94 \mathrm{kNM} \\
& A_{s t}=\frac{M-T_{y}}{\sigma_{s+j}}+\frac{T_{y}}{\sigma_{s t}} \\
&=\frac{\left(5.94 \times 10^{6}\right)}{150 \times 0.87 \times 150}-\left(15 \times 10^{3}\right) \\
& A_{s t}=402.68 \mathrm{~mm}^{2} \\
& M_{\text {in }} A_{s 1}=0.31 .6 D=\frac{15 \times 10^{3}}{150} \\
&
\end{aligned}
$$

Providing comm diameter burs,

$$
\begin{aligned}
\text { Spacing }=\frac{b \times a_{s} t}{A_{s t}} & =\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{270} \\
& =290.89 \mathrm{~mm}
\end{aligned}
$$

Provide comm diameter burs at 280 mnck on both faces of short wall in horrental direction.
Step 6-Design of reiffor ene for cantilever action
Contuluer moment $=\left(\frac{1}{2} \omega 1+\times h\right) \times \frac{h}{3}$

$$
\begin{aligned}
& =\frac{1}{2} \times 10 \times 2.5 \times 1 \times \frac{1}{3} \\
& =4.17 \mathrm{kmm} \\
A_{s}=\frac{m}{r_{s+j} d}= & \frac{4.17 \times 10^{6}}{150 \times 0.87 \times 150}=213.03 \mathrm{~mm}^{2}
\end{aligned}
$$

Min AL $=0.31 .60=\frac{0.3}{100} \times 1000 \times 180=$ syamn $^{2}=27 \mathrm{amn}^{2}$ on each fare
Provide 10 mm chaineter bars at 280 mmck at Junction of side wall and base sled on both faces

Step 7- Design of base slab
Take overall $l_{\text {ak }}=180 \mathrm{~mm}$ and offecture th ic $=150 \mathrm{~mm}$ Minimum $A_{J} L=0.31 . b D=\frac{0.3}{100} \times 1000 \times 180=540 \mathrm{~mm}^{2}$

$$
=270 \mathrm{~mm}^{2} \mathrm{on} \mathrm{lech}
$$

Provide 10 mm @ 280 mmch as main and distritalion fuse bar on both faces.

Section d Elevation

Plan.

A rectangular RCC water tank resting on ground with an open top is required to store 80000 litres of water. The inside dimension of the tank may be taken as $6 \times 4 \mathrm{~m}$. The tank rests on wall on all four sides. Design the side walls of the tank using M20 concrete and Fe 415 steel.

Draw the following,
(i) Cross sectional elevation of rectangular water tank
(ii) Plan of rectangular water tank

DESIGN DATA

Volume of tank $=80000$ litres
Size of tank $=6 \mathrm{~m} \times 4 \mathrm{~m}$
Grade - M20 \& Fe415
SOLUTION
Step 1 - Permissible stresses
From IS : 456-2000 - Table 21,
Permissible stress in direct compression, $\sigma_{\mathrm{cc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$
Permissible stress in bending compression, $\sigma_{\mathrm{ctc}}=7 \mathrm{~N} / \mathrm{mm}^{2}$
Permissible stress in steel, $\sigma_{\mathrm{st}}=0.6 \mathrm{fy}=150 \mathrm{~N} / \mathrm{mm}^{2}$ (Assume)
$\mathrm{m}=280 / 3 \sigma_{\mathrm{cbc}}=280 /(3 * 7)=13.333 \mathrm{k}=1 /\left[1+\left(\sigma_{\mathrm{st}} / \mathrm{m} \sigma_{\mathrm{cbc}}\right)\right]=0.38$
$\mathrm{j}=1-\mathrm{k} / 3=0.87$
$\mathrm{Q}=0.5 \sigma_{\mathrm{cbc}} \mathrm{kj}=1.16$

Step 2 - Dimensions of tank

Depth of tank $=$ Volume $/$ Area $=\left(80000 \times 10^{-3}\right) /(6 \times 4)=3.33 \mathrm{~m}$ Assuming free board as 150 mm , Depth $=3.33+0.15=3.48 \mathrm{~m}$

Hence take depth of tank as 3.5 m
$\mathrm{L} / \mathrm{B}=6 / 4=1.5<2$, Hence walls are designed as continuous slab subjected to water pressure above an height of $\mathrm{H} / 4$ or 1 m , whichever is greater, $\mathrm{h}=3.5 / 4$ (or) $1=1 \mathrm{~m}$

Intensity of water pressure, $\mathrm{p}=\mathrm{p}(\mathrm{H}-\mathrm{h})=10(3.5-1)=25 \mathrm{kN} / \mathrm{m}^{2}$
Step 3 - Moment on side walls

Long wall

BM at fixed end of long wall $=\left(\mathrm{pL}^{2}\right) / 12=\left(25 \times 6^{2}\right) / 12=75 \mathrm{kNm}$
BM in centre of long wall $=\left(\mathrm{pL}^{2}\right) / 8=\left(25 \times 6^{2}\right) / 8=112.5 \mathrm{kNm}$
Short wall
BM at fixed end of short wall $=\left(\mathrm{pB}^{2}\right) / 12=\left(25 \times 4^{2}\right) / 12=34 \mathrm{kNm}$
BM in centre of short wall $=\left(\mathrm{pB}^{2}\right) / 8=\left(25 \times 4^{2}\right) / 8=50 \mathrm{kNm}$

Step 4 - Design of side walls (vertical reinforcement)
Maximum moment, $\mathrm{Qbd}^{2}=59 \mathrm{kNm}$
$\mathrm{d}=225.53 \mathrm{~mm}$, Eff depth $=225 \mathrm{~mm}$, Overall depth $=250 \mathrm{~mm}$
Minimum $\mathrm{A}_{\mathrm{st}}=0.3 \% \mathrm{~b} \mathrm{D}=750 \mathrm{~mm}^{2}$
Provide 12 mm dia bars, Spacing $=\left(1000 x(\pi / 4) \times 12^{2}\right) / 750=150.08=150 \mathrm{~mm}$
Provide 12 mm dia bars @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as vertical reinforcement in side walls
Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \mathrm{x}(\pi / 4) \times 12^{2}\right) / 160=753.98 \mathrm{~mm}^{2}$
Step 5 - Design of long walls (horizontal reinforcement)
Direct tension in long wall, $\mathrm{T}_{\mathrm{x}}=\mathrm{pB} / 2=(25 \times 4) / 2=50 \mathrm{kN}$
Moment at long wall ends, $M=59 \mathrm{kNm}$
$\mathrm{A}_{\text {st }}$ (long wall corners) $=\frac{M-T_{x}}{\sigma_{s t} j d}+\frac{T_{x}}{\sigma_{s t}}=2341 \mathrm{~mm}^{2}$
Provide 20 mm dia bars, Spacing $=\left(1000 \times(\pi / 4) \times 20^{2}\right) / 2341=134.20=130 \mathrm{~mm}$
Provide 20 mm dia bars @ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as horizontal reinforcement at corner of long wall.

Provided $\mathrm{A}_{\text {st }}=\left(1000 \mathrm{x}(\pi / 4) \times 20^{2}\right) / 130=2416.61 \mathrm{~mm}^{2}$
Moment at long wall centre, $\mathrm{M}=53.5 \mathrm{kNm}$
$\mathrm{A}_{\mathrm{st}}($ long wall centre $)=2153.68 \mathrm{~mm}^{2}$
Provide 20 mm dia bars, Spacing $=\left(1000 x(\pi / 4) \times 20^{2}\right) / 2153.68=145.87=130 \mathrm{~mm}$ Provide 20 mm dia bars @ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as horizontal reinforcement at centre of long wall.

Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \times(\pi / 4) \times 20^{2}\right) / 130=2416.61 \mathrm{~mm}^{2}$
Step 6 - Design of short walls (horizontal reinforcement)
Direct tension in short wall, $\mathrm{T}_{\mathrm{y}}=\mathrm{pL} / 2=(25 \times 6) / 2=75 \mathrm{kN}$
A_{st} (short wall corners) $=\frac{M-T_{y}}{\sigma_{s t} j d}+\frac{T_{y}}{\sigma_{s t}}=2506.81 \mathrm{~mm}^{2}$
Provide 20 mm dia bars, Spacing $=\left(1000 \mathrm{x}(\pi / 4) \times 20^{2}\right) / 2506.81=125.32=120 \mathrm{~mm}$
Provide 20 mm dia bars @ $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as horizontal reinforcement at corner of short wall.

Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \mathrm{x}(\pi / 4) \times 20^{2}\right) / 120=2617.99 \mathrm{~mm}^{2}$
Moment at short wall centre, $M=9 \mathrm{kNm}$
$\mathrm{A}_{\mathrm{st}}($ short wall centre $)=803.96 \mathrm{~mm}^{2}$
Provide 12 mm dia bars, Spacing $=\left(1000 x(\pi / 4) \times 12^{2}\right) / 803.96=140.68=120 \mathrm{~mm}$
Provide 12 mm dia bars @ $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as horizontal reinforcement at centre of short wall.

Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \mathrm{x}(\pi / 4) \times 12^{2}\right) / 120=942.48 \mathrm{~mm}^{2}$
Step 7 - Design of reinforcement for cantilever action
Cantilever moment $=(1 / 2 \times 3.5 \times 1 \times 10) \times((1 / 3) \times 1)=5.83 \mathrm{kNm}$
$\mathrm{A}_{\mathrm{st}}=\mathrm{M} / \sigma \mathrm{stjd}=\left(5.83 \times 10^{6}\right) /(150 \times 0.87 \times 225)=198.55 \mathrm{~mm}^{2}$
Minimum $\mathrm{A}_{\mathrm{st}}=0.3 \% \mathrm{bD}=750 \mathrm{~mm}^{2}$
Provide 12 mm dia bars, Spacing $=\left(1000 x(\pi / 4) \times 12^{2}\right) / 750=150.08=150 \mathrm{~mm}$
Provide 12 mm dia bars @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ at junction of side wall and base slab
Provided $\mathrm{A}_{\mathrm{st}}=\left(1000 \mathrm{x}(\pi / 4) \times 12^{2}\right) / 160=753.98 \mathrm{~mm}^{2}$

Step 8 - Design of base slab

Taking overall thickness of base slab as 250 mm , effective depth $=225 \mathrm{~mm}($ Cover $=$ 25 mm)
Minimum Ast $=0.3 \% \mathrm{~b} D=750 \mathrm{~mm}^{2}$
Provide 12mm dia bars, Spacing $=(1000 x(\pi / 4) x 122) / 750=150.08=150 \mathrm{~mm}$ Provide 12 mm dia bars @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as vertical reinforcement in side walls Provided $\mathrm{A}_{\mathrm{st}}=(1000 \mathrm{x}(\pi / 4) \mathrm{x} 122) / 160=753.98 \mathrm{~mm}^{2}$

RECTANGULAR WATER TANK

CROSS SECTION

PLAN

All dimensions are in mm M20 Grade Concrete Fe 415 Grade steel

Circular Water Tank
Circular tandes on ground may be designed either with flexible connection of the wall with the base or with a rigid connection of the wall with base. In flexible connection, expansion or contraction of side walls - is possible While in rigid connection, the walls are monolithic with the base.
(i) Circular tank with rigid connection (wall restrained at base)

The wall resist the water pressure partly by hoop action and partly by cantilever acton, while hap action is predominant. These tanks are analysed by following methods.
\rightarrow Reissued's method
\rightarrow Carpenter's method
\rightarrow Approximate method
\rightarrow IS code method
Is call method
The bending moments hoop tension and shear at base for the tank wall of circular tank may be determined by using appropriate coefficients guin by using Is code. There coefficients depend on the ratio $H^{2} / D t$
\rightarrow Hoop tension per metre height $=$ coefficient $\times \omega H(N / M)$
\rightarrow Beading monet per metre sun $=$ coefficient $x \mathrm{\omega H}^{3}(\mathrm{Nm} / \mathrm{m})$
\rightarrow Shear force at base of wall = Coefficient $x w^{2}(N)$
(Db) Design a circular tank $12 m$ diameter and 4 metre high. The tank rests on firm ground. Thee walls of the lank are restrained at the base. Use Mroconceete and rez250 steed.

Given
Diameter, $D=12 \mathrm{~m}$
Height, $H=4 \mathrm{~m}$
Restrained at base
Mro grade concrete and Fests grade steel
Solution

Circular water tank with fired base (open top)

Step 1 - Permissible stresses
Permissible stere in dosed tension (tank wall) $\sigma_{c t} \sigma_{1}=1.2 \mathrm{~N} / \mathrm{man}^{2}$ (I53370, part II, Tesl,)
Permissible steers in steel, $\sigma_{51} 1=115 \mathrm{Nmn}^{2}\left(T_{0} 250\right)$ (I5 3370-P名和 II)
Permissible stress in direct compression, $\sigma_{c c}=5 N 1 \mathrm{~mm}^{2}$ banding compression, $\sigma_{c b c}=7 \mathrm{NmM}^{2}$

$$
\begin{aligned}
m & =280 / 3 \sigma_{c c} \\
& =280(3 \times 7) \\
& =13.333 \\
k & =1+\left(1+\frac{\sigma_{s t}}{m \sigma_{c S}}\right)=1 /\left(1+\frac{115}{13.333 \times 2}\right) \\
& =0.448 \\
j & =1-k_{c / 3}=1-\frac{0.448}{3}=0.851 \\
Q & =0.5 \sigma_{c b_{c} k} k=0.5 \times 7 \times 0.448 \times 0.851=1.334
\end{aligned}
$$

Ster 2- Dimensions of tank
$D=12 \mathrm{~m}, \quad 1 \quad 4=4 \mathrm{~m}$
Thickness of wal is taken as greater of following,
(i) 150 mm
(ii) $(3 \mathrm{H}+5) \mathrm{cm}=(3 \times 4)+5=12 \mathrm{~cm}=120 \mathrm{~mm}$
\therefore Take thicker $=120 \mathrm{~mm}$, Effective the $=170-30=100 \mathrm{~mm}$
Step 3 - Design of sickle walls for hoop tension

$$
\frac{1 t^{2}}{D t}=\frac{4^{2}}{12 \times 0.17}=2.8
$$

IS 3820 IV, Table 9, My 35, for 0.6 H

$$
\begin{aligned}
\text { Cocfficiat for haop tersion } & =0.514+\left(\frac{0.575-0.574}{8-6}\right) \times(7.8-6) \\
& =0.569
\end{aligned}
$$

Hoop tersion per motre haight $=$ caefficial \times WHR

$$
\begin{aligned}
& =0.569 \times 9810 \times 4 \times 6 \\
F_{t} & =133965.36 \mathrm{~N}
\end{aligned}
$$

$$
A_{s t}=\frac{F_{t}}{r_{s t}}
$$

Tst for F Fe $250=115 \mathrm{Nmm}^{2}$ ($150 \mathrm{Nmm}^{2}$ for Feys5)

$$
\begin{aligned}
A_{s t} & =\frac{133965.36}{115} \\
& =1164.916 \mathrm{~mm}^{2}
\end{aligned}
$$

Ast for each face $=\frac{1164.916}{2}=582.458 \mathrm{~mm}^{2}$
provide 12 mn dia buas, spacing $=\frac{b \times a s t}{A_{s} t}$

$$
\begin{aligned}
& =\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{582.458} \\
& =194.173 \mathrm{~mm}
\end{aligned}
$$

Praide 12 mm diameter buas (c) Momm de as hoirontal reinfrement (Ast pruvided $=595.249 \mathrm{~mm}^{2}$) on each face

$$
\begin{aligned}
\text { Verticel seifforenet } & =0.31 .6 D \\
& =\frac{0.3}{100} \times 1000 \times 170=510 \mathrm{~mm}
\end{aligned}
$$

Ast for cach face $=\frac{510}{2}=255 \mathrm{~mm}^{2}$

Provide 8 mm die bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 8^{2}}{255}$.

$$
=197.12 \mathrm{~mm}
$$

Provide sim die bars at 19 ámack as vertical reinforcement (As provided $=264 \cdot 55 s m^{2}$) on each face Step 4 -Design of side wall for coilleues moment Is 3370 - Past IV, Thole 10, Pg 36 for $1.01 \mathrm{H}_{\text {, }}^{(x)}$

Cesfficiet for moment $=0.0187-\frac{(0.0187-0.0146)}{8-6} \times(7.8-6)$

$$
\begin{aligned}
\text { Moment } & =\text { coefficient } \times \omega \mathrm{H}^{3} \\
& =0.016 \times 9810 \times 4^{3}
\end{aligned}
$$

Moment $=10045.44 \mathrm{NM}$

$$
A_{s t}=\frac{m}{\sigma_{\text {st }}+2}=\frac{10045^{5} .44 \times 10^{3}}{115 \times 0.851 \times 140}=733.185 \mathrm{~mm}^{2}
$$

Minimum $A_{S T}=0.31 . b D=\frac{0.3}{100} \times 1000 \times 170=510 \mathrm{~mm}^{2}$

$$
\text { Ast on ole face }=\frac{733.185}{2}=366.593 \mathrm{mn}^{2}
$$

Provide 8 mm din bars at 130 mm ck as contelanes reinforcenent on both faces (AJt $=\frac{1000 \times \frac{\pi}{4} \times 8^{2}}{130}=386.658 \mathrm{mmn}$)
Stap 5-Design of base slab
Provicue base slab of thideress $=200 \mathrm{~mm}, d=170 \mathrm{~mm}$

$$
\begin{aligned}
& A_{S t}=0.31 . b D \\
& A_{S t}=\frac{0.3}{100} \times 1000 \times 200=600 \mathrm{~mm}^{2}
\end{aligned}
$$

Ast on each frice $=\frac{600}{2}=300 \mathrm{~mm}^{2}$

Proude 8 mm die bass, spacing $=\frac{b \times a_{s t}}{A_{s t}}$

$$
\begin{aligned}
& =\frac{1000 \times \frac{\pi}{4}}{300} \times 8^{2} \\
& =167.552 \mathrm{~mm}
\end{aligned}
$$

Provide 8 mm da bass at 160 mm ck on but faces.

$$
\text { (Hst }=\frac{1000 \times \frac{\pi}{4} \times 8^{2}}{160}=314 \cdot\left(5 \mathrm{~mm}^{2}\right)
$$

Pb) Design a circular tank reshry on firm ground the the following particulars.
(i) Diameter of tank $=3.5 \mathrm{~mm}$ crualue water tank witt flexible base (opatop)
(ii) Depth of water $=3 \mathrm{~m}$
(iii) The wall and base are not monolithic with each other
(ii) Specific weight of water $=9810 \mathrm{~N} / \mathrm{m}^{3}$

Use mas concrete and Fegisosteel
Step 1-Pernissible stress
Permissible stress in chrect tension $=1.2 N 1 \mathrm{~mm}^{2}$ (IS 3300 - Put II Tall e 1)

Permissible stress in steel $=150 \mathrm{Nmm}^{2}$ (Fecu15 grade)
Permissible stress in direct compression, $\sigma_{C c}=5 \mathrm{Nmm}^{2}$
Permissible stress in beading compression, $\sigma_{c c_{c}}=7 N\left(a \mathrm{~m}^{2}\right.$

$$
\begin{aligned}
& m=\frac{280}{3 \sigma_{c b c}}=\frac{280}{3 \times 7}=13.333 \\
& k=1\left(1+\frac{\sigma_{s t}}{m \sigma_{c b c}}\right)=\frac{1}{\left(1+\frac{150}{13.33 \times 7}\right)}=0.384 \\
& j=1-\frac{k}{3}=1-\frac{0.384}{3}=0.87 \\
& Q=0.5 \sigma_{c c_{c} k j}=0.5 \times 7 \times 0.387 \times 0.87=1.16
\end{aligned}
$$

Step 2 -Dimensions of tank

$$
D=3.5 \mathrm{~m}, \quad H=3 \mathrm{~m}
$$

Thidaress of wall is talon as geectar of following.
(i) 150 mm
(ii) $(31+5) \mathrm{cm}=(3 \times 3)+5=14 \mathrm{~cm}=140 \mathrm{~mm}$

Take thiclares $=150 \mathrm{~mm}$
Step 3-Design of side wall
Consider 1 m height of wall.

$$
\begin{aligned}
& \text { Hap tension }=\nu_{w} \times 1+\frac{D}{2}=9.8+\times 1 \times \frac{3.5}{2}=1746 \mathrm{kN} \\
& \text { Hoop tension }=\psi_{w} \times H \times \frac{D}{2}=9.81 \times 2.5 \times \frac{3.5}{2}=42.919 \mathrm{kw} \\
& F_{8 t}=42.919 \mathrm{kw} \\
& A_{S L}=\frac{F_{1} 1}{\sigma_{S t}}=\frac{42.919 \times 10^{3}}{115}=373.209 \mathrm{~mm}^{2} \\
& \text { Minimum AsL }=0.31 .60=\frac{0.3}{100} \times 1000 \times 150=450 \mathrm{~mm}^{2}
\end{aligned}
$$

As on one face $=450 / 2=225 \mathrm{~mm}^{2}$

Provide 10 mm dia bars, pacing $=\frac{b \times \text { ast }}{\text { Ast }}$

$$
=\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{225}
$$

$=349.060 \mathrm{~mm}$
Provide comm dia bars@ 300 mm dc (Ast provided= $\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{300}=261.799 \mathrm{~mm}^{2}$) an horizontal and vertual renforiement on both faces.

$$
\begin{aligned}
\text { Pemissible staees in tank well }= & \frac{F_{t}}{A_{c}+m A_{s t}} \\
= & \underline{42.919 \times 10^{3}} \\
& (1000 \times 150)+(13.33 \times 2 \times 261.799) \\
= & 0.273 \mathrm{~N}) \mathrm{mm}^{2} \\
& <1.2 \mathrm{~N} \mathrm{~mm}^{2}
\end{aligned}
$$

Stap 4-Design of base slab
Provide base sleb of thicluers $200 \mathrm{~mm}, d=170 \mathrm{~mm}$

$$
\begin{aligned}
A_{S t}=0.31 . b \Delta & =\frac{0.3}{100} \times 1000 \times 200 \\
1 & =600 \mathrm{~mm}^{2}
\end{aligned}
$$

Ast on each face $=\frac{600}{2}=300 \mathrm{~mm}^{2}$
Povicle smm die baos, spacing $=\frac{1000 \times \frac{\pi}{4} \times 8^{2}}{300}$

$$
=167.552 \mathrm{~mm}
$$

Provicle 8 mm dice bars at 160 mm ch on both fues

$$
\text { Ast provicled }=\frac{1000 \times \frac{\pi}{4} \times 8^{2}}{160}=3\left(4 \cdot 159 \mathrm{~mm}^{2}\right)
$$

Design an RCC circular tank resting on ground with a flexible base and a spherical dome for a capacity of 500000 litres. The depth of storage is to be 4 m . And free board is 200 mm . Materials used are M20 grade concrete and Fe 415 HYSD bars. Draw the following,
(i) Cross section of the tank showing reinforcement details in dome, tank walls and floor slabs.
(ii) Plan of the tank showing reinforcement details.

DESIGN DATA

Capacity of tank $=500000$ litres $=500 \mathrm{~m}^{3}$
Depth of storage $=4 \mathrm{~m}$
Grade - M20 \& Fe415
Codes - IS 456 \& IS 3370

SOLUTION

Step 1 - Permissible stresses

Permissible stress in direct tension (tank wall), $\sigma_{\mathrm{ct}}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 3370 (Part II) - 1965, Table 1)

Permissible stress in direct tension (dome \& ring beam), $\sigma_{\mathrm{ct}}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456-2000, Pg 80)

Permissible stress in steel, $\sigma_{\mathrm{st}}=0.6 \mathrm{fy}=150 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 800)
Permissible stress in direct compression, $\sigma_{\mathrm{cc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456-2000, Table 21)
Permissible stress in bending compression, $\sigma_{\mathrm{cbc}}=7 \mathrm{~N} / \mathrm{mm}^{2}$ (IS : 456-2000, Table 21)
$\mathrm{m}=280 / 3 \sigma_{\mathrm{cbc}}=280 /(3 * 7)=13.333$
$\mathrm{k}=1 /\left[1+\left(\sigma_{\mathrm{s}} / \mathrm{m} \sigma_{\mathrm{cbc}}\right)\right]=0.38$
$\mathrm{j}=1-\mathrm{k} / 3=0.87$
$\mathrm{Q}=0.5 \sigma_{\mathrm{ctc}} \mathrm{kj}=1.16$

Step 2 - Dimensions of tank

Depth of tank $=4+0.2=4.2 \mathrm{~m}$
Volume of tank $=\left(\pi \mathrm{D}^{2} / 4\right) * 4.2=500$
$\mathrm{D}=12.93 \mathrm{~m}$
Central rise $=(1 / 5$ to $1 / 6) \mathrm{D}=(1 / 6) \mathrm{D}=2.16 \mathrm{~m}$
Radius of dome, $\mathrm{R}^{2}=\left[6.465^{2}+(\mathrm{R}-2.16)^{2}\right]$

$$
\mathrm{R}=10.755 \mathrm{~m}
$$

$\sin \mathrm{q}=6.465 / 10.755=0.6, \cos \mathrm{q}=8.595 / 10.755=0.8, \mathrm{q}=36.87$

Step 3 - Design of top spherical dome

Thickness of top dome, $t=100 \mathrm{~mm}$ (Assume)
Load calculation
Self weight $=0.1 * 25=2.5 \mathrm{kN} / \mathrm{m}^{2}$
Live load \& finishes $\quad=2 \mathrm{kN} / \mathrm{m}^{2}$
Total load, $\quad \mathrm{w}=4.5 \mathrm{kN} / \mathrm{m}^{2}$
Meridional stress
Meridional thrust, $\mathrm{T}_{1}=\mathrm{wR} / 1+\cos \mathrm{q}=\left(4.5^{*} 10.755\right) /(1+0.8)=26.888 \mathrm{kN} / \mathrm{m}$
Meridional stress $\quad=\mathrm{T}_{1} / \mathrm{t}=26.888 / 100=0.269 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}$
Hoop stress
Circumferential force, $\mathrm{T}_{2}=\mathrm{wR}\{\cos \mathrm{q}-(1 /[1+\cos \mathrm{q}]\}$

$$
=4.5 * 10.755 *\{0.8-(1 /[1+0.8]\}=11.831 \mathrm{kN} / \mathrm{m}
$$

Hoop stress $=\mathrm{T}_{2} / \mathrm{t}=11.831 / 100=0.118 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}$

Reinforcement

$\mathrm{A}_{\mathrm{st}}=0.3 \% \mathrm{bd}=(0.3 / 100) * 1000 * 100=300 \mathrm{~mm}^{2}$
$\mathrm{S}=\left[1000 *(\pi / 4) * 8^{2}\right] / 300=167.55 \mathrm{~mm}$
Provide 8 mm dia bars at 160 mm c/c circumferentially $\&$ meridionally

Step 4 - Design of top ring beam

Reinforcement

Hoop tension, $\mathrm{F}_{\mathrm{t}}=\mathrm{T}_{1} * \cos \mathrm{q} * \mathrm{D}_{\mathrm{t}} / 2=26.888 * 0.8 *(12.93 / 2)=139.065 \mathrm{kN}$
$\mathrm{A}_{\mathrm{st}}=\mathrm{F}_{\mathrm{t}} / \sigma_{\mathrm{st}}=\left(139.065 * 10^{3}\right) / 150=927.1 \mathrm{~mm}^{2}$
Provide 3 no's of 20 mm dia bars $\left(\mathrm{A}_{\mathrm{st}}=942.478 \mathrm{~mm}^{2}\right)$
Minimum shear reinforcement is given by $\mathrm{A}_{\text {sv }} /\left(\mathrm{b}^{*} \mathrm{~S}_{\mathrm{v}}\right)=0.4 /\left(0.87 * \mathrm{f}_{\mathrm{y}}\right)$
Provide 2 legged 6 mm dia stirrups at $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

Size

Permissible stress in ring beam $=F_{t} /\left(A_{c}+\mathrm{mA}_{\mathrm{st}}\right)$

$$
\begin{aligned}
2.8 & =\left(139.065 * 10^{3}\right) /\left(\mathrm{A}_{\mathrm{c}}+13.33 * 942.478\right) \\
\mathrm{A}_{\mathrm{c}} & =37102.84
\end{aligned}
$$

Provide top ring beam of size $200 \times 200 \mathrm{~mm}$

Step 5 - Design of tank walls

Horizontal reinforcement

Hoop tension, $\quad \mathrm{F}_{\mathrm{t}}=\mathrm{g}_{\mathrm{w}} * \mathrm{H} * \mathrm{D}_{\mathrm{t}} / 2=9.81 * 4.2 * 12.93 / 2=266.371 \mathrm{kN} / \mathrm{m}$
$\mathrm{A}_{\mathrm{st}}=\mathrm{F}_{\mathrm{t}} / \sigma_{\mathrm{st}}=\left(266.371 * 10^{3}\right) / 150=1775.807 \mathrm{~mm}^{2} / \mathrm{m}$
$\mathrm{A}_{\text {st }}$ on one face $=1775.807 / 2=887.904 \mathrm{~mm}^{2} / \mathrm{m}$
Provide 16 mm dia bars, $\mathrm{S}=\left[1000 *(\pi / 4) * 16^{2}\right] / 887.904=226.446 \mathrm{~mm}$
Provide 16 mm dia bars at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ on both faces $\left(\mathrm{A}_{\mathrm{st}}=2010.62 \mathrm{~mm}^{2}\right)$
Size
Permissible stress in tank wall $=\mathrm{F}_{\mathrm{t}} /\left(\mathrm{A}_{\mathrm{c}}+\mathrm{mA}_{\mathrm{st}}\right)$

$$
\begin{aligned}
& 1.2=\left(266.371 * 10^{3}\right) /\left(\mathrm{A}_{\mathrm{c}}+13.33 * 2010.62\right) \\
& \mathrm{A}_{\mathrm{c}}=195174.269 \\
& 1000 * \mathrm{t}=195174.269
\end{aligned}
$$

Provide tank wall of thickness 200 mm throughout the tank wall
Vertical reinforcement
$\mathrm{A}_{\mathrm{st}}=0.3 \% \mathrm{bd}=(0.3 / 100) * 1000 * 200=600 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {st }}$ on one face $=600 / 2=300 \mathrm{~mm}^{2}$
Provide 10 mm dia bars, $\mathrm{S}=\left[1000 *(\pi / 4) * 10^{2}\right] / 300=261.8 \mathrm{~mm}$
Provide 10 mm dia bars at $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ on both faces $\left(\mathrm{A}_{\mathrm{st}}=628.319 \mathrm{~mm}^{2}\right)$

Step 6 - Design of tank floor slab

Reinforcement

$\mathrm{A}_{\mathrm{st}}=0.3 \% \mathrm{bd}=(0.3 / 100) * 1000 * 200=600 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {st }}$ on one face $=600 / 2=300 \mathrm{~mm}^{2}$
Provide 10 mm dia bars, $\mathrm{S}=\left[1000 *(\pi / 4) * 10^{2}\right] / 300=261.8 \mathrm{~mm}$
Provide 10 mm dia bars at $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ on both faces $\left(\mathrm{A}_{\mathrm{st}}=628.319 \mathrm{~mm}^{2}\right)$

Sectiond Elecakon
8 mm elloomele

Reinfuccement in top dome

Reinfurcemet in base slds

Plan

Underground water tanks
Underground water tanks are commonly used for storage of water recieued from water supply mains operating at low pressure Videregound water $\tan k 5$. underground water tanks are usually of two. shapes circular. Shape and. rectangular. For tank es of singles capacity- the cost of shuttering for cicular tanks becomes high, hence rectangular tanks are used in such circumstances. Rectangular tails are normally not used for large capacities since they are un economical and analysis is difficult.

When circular and rectangular tanks are situated underground, the walls of the tank to be designed for earth pressure as well as water pressure acting separately and also acing simultaneously. Similarly, - He floors of \tan es are te be designed for hydrostatic water pressure (if water table is higher)
ading upwarels.
Euthpressure on tanle walls
\rightarrow Tank wall supporiting a dey or mist bailfill of cohesionlesi sill. The intensity of a ature eark pressuce at base of well,

$$
P_{a}=K_{a} \Delta H
$$

Totel adrie eath, $P_{a}=\frac{1}{2} k_{a} \nu H x+H$
piossuce

$$
=\frac{1}{2} k \omega H^{2}
$$

ating at $H / 3$ bove base.
\rightarrow In case of subsereged backflo (sacfill scturated with water) ineansity of base of well

$$
P_{a}=\left.k_{a}\right|^{\prime}\left|++b_{w}\right|+
$$

\rightarrow If bacefill is parlly oubnerged (cle) the baleflel is "moist to a depth H_{1} belair grand leval and
 then it is subnerged.

$$
P_{a}=K_{a v} H_{1}+H_{a \nu} \nu^{\prime} H_{1}+\nu_{w} H_{2}
$$

where $u \rightarrow$ unit ut f roul
$\nu^{\prime} \rightarrow$ sulnerged unit weight $=4_{\text {set }}^{\text {sal }}-2_{w}$
$v_{\omega} \Rightarrow V_{\text {nit waght of wites }}$
vsat \rightarrow satuchters yit ut
Uplify pressuace on the floor on the tank
 If the wader talle is below the flor lad, the floor of the tank is derigned for the laud of tark well, tank reof ate assumed to distributad enenly

He weight of wider shading on the floor and the rolf weight of fleas are assumed to pass direly te the formation. If the as sal water lend (or ground water lend) is above the floor laval of the tank uplift pressure will be induced. When take is empty it should not float. The naigit of empty tank must exceed He flotation value to give a sural factor of safety 1.1 to 1.25
$\mathrm{Pb})$ Design an undegreand water tank $4 \mathrm{am} \times 1 \mathrm{~m} \times 3 \mathrm{~m}$ dap The sub suit consists of sat having angle of repose of 30° and saturated unit weight of $17 \mathrm{kw} / \mathrm{m}^{3}$. The water tale is likely to rise upto ground level. vie Mss concrete on $T_{0} 415$ HYSD bars. Take unit weight of water as $9.81 \mathrm{kw} / \mathrm{m}^{3}$
Solution
Step 1 - Permissible stresses
Pernissidle tres in steed under died tension $\sigma_{s t}=150 \mathrm{~N} / \mathrm{mm}^{2}$ Pernissibe compressive stress in column; $\sigma_{s i}=175 \mathrm{~N} / \mathrm{mm}^{2}$ sobjeded to derided load (I5 3320 - Pact IT) Permissible stress in died compression, $\sigma_{C C}=S_{N} / \mathrm{mm}^{2}$ bending

$$
\begin{aligned}
& 1,1 \sigma_{c S_{c}}=7 \mathrm{Nan}^{2} \\
& \left(\text { Is } 456_{1}\right. \text { Task 21) }
\end{aligned}
$$

$$
\begin{aligned}
& M=\frac{280}{30 c b c}=\frac{280}{3 \times 7}=13.33 \\
& k=\frac{1}{1+\frac{\sigma 51}{m o d c}}=\frac{1}{150}=0.38 \\
& 15.33 \times 7
\end{aligned}
$$

$$
\begin{aligned}
j=1-\frac{l_{c}}{3}=1-\frac{0.38}{3}=0.87 \\
\begin{aligned}
Q=0.5 \sigma_{c c} k_{j j} & =0.5 \times 7 \times 0.38 \times 0.87 \\
& =1.16
\end{aligned}
\end{aligned}
$$

Stap 2-Dimension 5 of tank.
Lagth, $L=$ lor, Brectll, $B=4$ min, $D e p t h, ~ D=3 m$
The base slab will be designed. for uplift pressure as water tadle is abone greund lend.

$$
\frac{1}{B}=\frac{10}{4}=2.5>2
$$

bang walls are designed as veitical cettevers fiked at base and short wolls are designeed as hariuntal slebr bafueen lang walls in top portaen ad buttum ore metre hieight is clesigned as ceirlilewes Slep 3 -Design of lang walas
(a) Eak ently with pressure of soturated suil from a cusile (i) Main bars (Yorhiel r_{f})

In case of submerged backfill, intenstly of be at base of will.

$$
\left.P_{a}=k_{a} \nu^{\prime} H+\right)_{w} H
$$

where $\nu^{\prime} \rightarrow$ Subreerged unit $\omega t=\nu_{\text {sat }}-24_{i}$.

$$
\begin{aligned}
& \nu_{w \rightarrow} \rightarrow \text { vait wit water }=9.81 \mathrm{kw}_{\mathrm{m}} \mathrm{H}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { It } \rightarrow \text { Heught of toak= } 3 \mathrm{~m}
\end{aligned}
$$

$k_{a \rightarrow} \rightarrow$ Cofficieal of acture earth piessue

$$
\begin{aligned}
& =\frac{1-\sin 6}{1+\sin \gamma} \\
\mu^{\prime} & =2_{\operatorname{sat}}-2_{\omega} \\
K_{c a} & =\frac{17-9.81=7.19 \mathrm{ks} / \mathrm{m}^{3} 30}{1+\sin 30}=0.333 \\
P_{a} & =(0.333 \times 7.19 \times 3)+(9.81 \times 3) \\
& =36.613 \mathrm{kw} / \mathrm{m}^{2} .
\end{aligned}
$$

Totel acture eath piesouce, $P_{a}=\frac{1}{2} \times 36.613 \times 13$

$$
\begin{aligned}
& \text { Moment }=P_{a} \times \frac{4}{3}=54.92 \times \frac{3}{3}=54.92 \mathrm{kwm} \\
& M=Q 6 d^{2} \\
& 54.92 \times 10^{6}=1.16 \times 1000 \times \mathrm{kd}^{2} \\
& \Rightarrow d=217.589 \mathrm{~mm}
\end{aligned}
$$

Prurde effecture dopth, $d=225 \mathrm{~mm}$, cover $=25 \mathrm{~mm}$ Corall dophle: off dopth to cower

$$
\begin{aligned}
& =225+25 \\
& =250 \mathrm{~mm} \\
A_{s t}=\frac{M}{O_{s+j d}} & =\frac{54.92 \times 10^{6}}{150 \times 0.87 \times 225}=1870.413 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 16 mm dia bars, spacing $=\frac{b \times a, t}{\text { Ast }}$

$$
\begin{aligned}
\text { spawn } & =\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{1870.413} \\
& =107.496 \mathrm{~mm}
\end{aligned}
$$

Pravide 16 mm dia bars © 100 mm cle on outride face at bottom of long wall as vertical reinforament: Guelailmet of reirfsemedt
As SM is proportiend to h^{3}, we have

$$
\begin{aligned}
& \frac{A_{s t h}}{A_{s t H}}=\frac{h^{3}}{H^{3}} \\
& \Rightarrow h=\left(\frac{A_{s+h}}{A_{s t H}}\right)^{1 / 3} \times H
\end{aligned}
$$

\rightarrow Half the bas are cartailed, $\therefore A_{S t h}=\frac{1}{2} A_{s t_{H}}$

$$
\begin{aligned}
h & =\left(\frac{A_{s} / h}{2 A s+h}\right)^{1 / 3} \times H \\
& =\left(\frac{1}{2}\right)^{3 / 3} \times 3 \\
& =2.38 \mathrm{~m}
\end{aligned}
$$

Heigh from base $=3-2.38=0162 \mathrm{~m}$
As per I5Y5G, the baes are to be contimed for a distera of
(i) $12 \phi=12 \times 16=192 \mathrm{mM}$
(ii) $d=225 \mathrm{~mm}$
whinewa is more
Henee, burs are curtailad at a distanee of $0.62+0.225=0.845 \mathrm{~mm}$ foon base
\rightarrow Ore fourth bass are catered. Asth $=\frac{1}{4}$ Astr

$$
\begin{aligned}
h & =\left(\frac{A_{s}+h}{A_{s}+H}\right)^{1 / 3} \times H \\
& =\left(\frac{A_{s}+h}{4 A_{s+h}}\right)^{1 / 3} \times H \\
& =\left(\frac{1}{4}\right)^{1 / 3} \times 3 \\
& =1.89 \mathrm{~m}
\end{aligned}
$$

Height from base $=3.1 .89=1.11 \mathrm{~mm}$
As per ISWG, the bass age te be contimed for a distance of
(i) $12 \phi=12 \times 16=192 \mathrm{~mm}$
(ii) $d=225 \mathrm{~mm}$
whichever is more
Hence 314 th of bass are curtailed at a distance of $1.11+0.295=1.335 \mathrm{~m}$ from base

$$
\begin{aligned}
& \text { Min ASL }=\frac{0.3}{1} \% b D=\frac{0.3}{100} \times 1000 \times 250=78 \mathrm{cmm}^{2} \\
& H_{2} \text { Ass }_{H}=\frac{1}{2} \times 1870.1+13=953.207 \mathrm{~mm}^{2} 775 \mathrm{~cm}^{2} \\
& H_{\text {L }} A_{S S} H=\frac{1}{4} \times 1810.413=467.603 \mathrm{~mm}^{2} \not 775 \mathrm{cmm}^{2}
\end{aligned}
$$

Hence curtailment of half the bass is alone

$$
\begin{aligned}
& \text { possible } \begin{aligned}
\text { Spacing of } \left.16 \mathrm{~mm} \text { bars for } 1 / 2 A_{5}\right) & =\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{953.207} \\
& =210.932 \mathrm{mms}
\end{aligned} \\
&=2
\end{aligned}
$$

Provide 16 mm diameter bars at 100 mm ch at base for a height of 0.845 m and 16 mm driveler at ta mm ck above height of 0.845 m . 0.5 vertical rinforceind
(ii) Distribution rft (horinatl)
\rightarrow Minimum $A_{A t}=0.3^{\circ} \left\lvert\, .5 D=\frac{0.3}{100} \times 1000 \times 250=750 \mathrm{~mm}^{2}\right.$
Att on each face $=\frac{7 ⿷^{2}}{2}=375 \mathrm{~mm}^{2} 37 \mathrm{~mm}^{2}$
Provide lome die bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{200 g . \text { If tim }}$
Provide comas draneter bars al rommel as: (horizatal oft) disterbtion bars
(iii) Direct compression in long walls

The earth pressure acting on short walls will cause compression in long walls because top portion If shat wells at as slab supported on long walls.
Bottom portion height $h / 4(01)$ in whichever is greater $3 / 4(0) \mathrm{lm}=0.75^{\circ}(\mathrm{O}) \mathrm{lm}=1 \mathrm{~m}$, So $H=3-1=2 \mathrm{~m}$
Intensity at bare of wall, $P_{a}=\mathbb{k}_{a} \int^{\prime} H+\nu_{\omega} H$]

$$
\begin{aligned}
P_{u} & =(0.333 \times 7.19 \times 2)+(9.81 \times 2) \quad \begin{aligned}
I_{51} & =48.818 \times 10^{3} \\
& =325.453 \mathrm{~mm}^{2}
\end{aligned} \\
& =24.409 \mathrm{kw} / \mathrm{m}^{2}
\end{aligned}
$$

Direct compression davelaped

$$
\begin{aligned}
& \text { on lang wells }=P_{a} \times \frac{B}{2}=24.409 \times \frac{4}{2}
\end{aligned}
$$

(b) Tank fill with water, and io cath. flo oubicile distortion Man bess (wodaliti) intensity at base of wall $P_{G}=2 w_{w} \mathrm{H}$ tad will

$$
=9.81 \times 3
$$

$$
=29.43 \mathrm{kN}
$$

Total actine carth pressure $=\frac{1}{2} \times 29.43 \times 3$

$$
P_{a}=44 \cdot 14551 \mathrm{~N} / \mathrm{m}
$$

$$
\begin{aligned}
& \text { Momat }=P_{a} \times \frac{h}{3}=44.145 \times \frac{3}{3}=44.145 \mathrm{kNm} \\
& A_{\text {ot }}=\frac{M}{\sigma_{s t} d}=\frac{44.145 \times 10^{6}}{150 \times 0.87 \times 225}=1503.448 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 10 mm dia bars, spaing $=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{1503.44^{8}}=133.734 \mathrm{~mm}$
Provide 16 mm duametes bars at 130 mmck at inside face. at boltom of long urall as vertich reiforsoment Curbailmat of reirforcemal
As BM is prupurtiond to h^{3} we have,

$$
\begin{aligned}
& \frac{A_{s t h}}{A_{s+1}}=\frac{h^{3}}{1+3} \\
\Rightarrow & h=\left(\frac{A_{s t h}}{A_{s+}}\right)^{1 / 2} \times 1+
\end{aligned}
$$

\rightarrow Helf the burs are curtailed. Asth $=\frac{1}{2} A_{s t} H$

$$
\begin{aligned}
h & =\left(\frac{A \text { sth }}{2 A+h}\right)^{1 / 2} \times 3 \\
& =\left(\frac{1}{2}\right)^{1 / 3} \times 3 \\
& =2.38 \mathrm{~m}
\end{aligned}
$$

Height from base $=3-2.38=0.62 \mathrm{~m}$
Asper 15456 , the buas are to be coitinued for a distance of
(1) $12 d=12 \times 16=192 \mathrm{~mm}$
(ii) $d=225 \mathrm{~mm}$

Whichever is more
Hence half of bars are :...cutaileel at a distance of $0.62+0.225=0.845 \mathrm{~m}$ from bare

$$
\begin{aligned}
& M_{\text {In }} A_{S t}=0.31 . b D=\frac{0.3}{100} \times 1000 \times 250=75 \mathrm{~mm}^{2} \\
& H_{2} A_{S t_{H}}=\frac{1}{2} \times 1503.448=757.72{4 \mathrm{~mm}^{2}>780 \mathrm{~mm}^{2}}^{2}
\end{aligned}
$$

Spacing of 16 mm die bars for $1 / 2 A_{s} t=\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{751.724}$

$$
=267.468 \mathrm{~mm}
$$

Provide 16 mm diameter bars at $130 \mathrm{mmc} / \mathrm{c}$ at base for a height of 0.845 m and 16 mm die bars at raanmele above height of 0.845 m as vertical = reifforemat at inside face
(ii) Distribution eff (Horizontal if)

Minimum $A_{S t}=0.31 . b_{D}=\frac{0.3}{100} \times 1000 \times 250=750 \mathrm{ma}^{2}$
Att on each face $=\frac{750}{2}=375 \mathrm{~m}^{2}$
Provide comm die bars, spacing $=1000 \times \frac{\frac{\pi}{4} \times 10^{2}}{}=209.44 \mathrm{~mm}$
Provide 10 mm deeneter bars at 200 mm ck as horizontal reiffrement (distribution off)
(iii) Direct tension in long wells
since the tap portion of short walls ad as slab supported on long walls, the water pressie acting on short walls will cause tension in long walls Bottom portion height $h / 4(0 r)$ in whichever is greater

$$
3 / 4 \text { (or) } 1 \mathrm{~mm}=0.75(0 r) \mathrm{in}=1 \mathrm{~m}, \text { So } H=3-1=2 \mathrm{~m}
$$

Intensity at base of wall, $P_{\dot{G}}=\nu_{w} H=9.81 \times 2=19.62 \mathrm{k} / \mathrm{m}^{2}$ Direct cession tension clevalaped

$$
\begin{aligned}
& \text { Direct tension developed }=P_{a} \times \frac{B}{2}=19.62 \times \frac{4}{2} \\
& \text { on long walls } \\
& \text { Ast }=\frac{39.24 \times 10^{3}}{150}=361.6 \mathrm{~mm}^{2}
\end{aligned}
$$

which is less then area of distribution steel. Hence distribution steel will take direct tension

Steph-Design of short wells
(a) Tant enety with pressure of saturated soil from outrile
(i) Esportions

Bottom portion height h / y or im whichenes is giecter
$h=3 / 4(0) \mathrm{im}$ whichener is grater $=1 \mathrm{~m}$
Intenstly at base of wall, $\vec{a}=k_{a} \nu^{\prime} h^{\prime}+N_{\omega} h^{\prime}$

$$
\begin{aligned}
P_{a} & =(0.333 \times 7.19 \times 2)+(9.81 \times 2) \\
& =24.409 \mathrm{~kW} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\left.M_{f} \text { (fixed nomet at supports) }\right)=\frac{P_{2} B^{2}}{12}=\frac{24^{.4} 409 \times 4^{2}}{12}=32.545 \mathrm{kJm}
$$

$$
\text { BM at catre }=\frac{P a B^{2}}{8}=\frac{24.409 \times 4^{2}}{8}=48.818 \mathrm{kWM}
$$

$$
\text { Net momeat at certre }=B M-M_{f}=48.818-32.545
$$

At supports, $A_{s t}=\frac{M}{\sigma_{s+j d}}$

$$
\begin{aligned}
& =\frac{32.54 .5 \times 10^{6}}{150 \times 0.87 \times 225} \\
& =2 . \\
& =1108.387 \mathrm{~m}^{2}
\end{aligned}
$$

Using12i:Mm dia bass, spacing $=\frac{b \times \text { ast }^{\prime}}{A_{s t}}$

$$
\begin{aligned}
& =\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{1108.387} \\
& =102.038 \mathrm{~mm}
\end{aligned}
$$

Tuvide 12 mm claimeter bars at $=100 \mathrm{~mm}$ clc at outer face at $2 n$ below the tep as distribituon off (horirondel)
At mid spen, $A_{s t}=\frac{M}{\sigma_{\text {stjd }} d}$

$$
\begin{aligned}
& =\frac{16.273 \times 10^{6}}{150 \times 0.87 \times 225} \\
& =554.21 \mathrm{~mm}^{2}
\end{aligned}
$$

Using 12 mm dian buas, spacing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{5 \$ 4.21}$

$$
=204.069 \mathrm{~mm}
$$

Here plovide 12 mm dumeler bals at outerie fatines tin face distribution ft (horicatal)
(ii) Wotton portion

Intensity of cath prose et pressure of base of wall,

$$
\begin{aligned}
R_{1} & =k_{a} U^{\prime} H+\nu_{w H} \\
L^{\prime} & =U_{\text {ct }}-U_{w}=17-9.81=7.19 \mathrm{kwlm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& P_{A}=3 \mathrm{~m} \text { at base frombp } \\
& P_{a}=(0.333 \times 7.19 \times 3)+(9.81 \times 3)=36.613 \mathrm{kw} / \mathrm{m}^{2}
\end{aligned}
$$

Totel piessuee $=\frac{1}{2} \times 36.613 \times 1=18.307 \mathrm{kN}$

$$
\begin{aligned}
\text { Mamat } & =18.307 \times \frac{1}{3} \\
A_{S I} & =\frac{M}{\sigma_{S t} j d} \\
& =\frac{6.102 \times 10^{6}}{150 \times 0.87 \times 225} \\
& =207.816 \mathrm{~mm}^{2}
\end{aligned}
$$

$\min A_{I I}=0.31 \quad b D=\frac{0.3}{100} \times 1200 \times 250=750 \mathrm{~mm}^{2}$
Spacing of 12 mm diameles bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{750}$
Provide 12 mm deameter at $150 \mathrm{~mm} \quad=150.796 \mathrm{~mm}$ in the nertieel diretion form $C i c$ at outride face in the weincea durecien for botton in heighs. This space was doulled for uper portion. Hence prouide 12 m duaneter bars at Joorn cle at a height above in frem bottom
1b) Tank full with vioter and no ealtfile outside
(i) Top portion

- Sttom portion height h/y or im whilevers is greater

$$
h=3)_{4}(v) 1 m=1 m
$$

$$
\text { Intensity }=2 \omega h^{\prime}=9.81 \times 2=19.62 \mathrm{kw} / \mathrm{m}^{2}
$$

$$
M_{f}(\text { rixed momet at supporls })=\frac{F_{y} \beta^{2}}{12}=\frac{19.62 \times 4^{2}}{12}=26.161 \mathrm{~km}
$$

$$
\text { IM at catee }=\frac{P_{4} B^{2}}{8}=\frac{19.62 \times 4^{2}}{8}=39.241 \mathrm{~cm} \text {; }
$$

Net momad at ceatre $=B M-M_{f}=39.24-26.16=13-08 \mathrm{kMm}$
At supports, $A_{S}+=\frac{M}{\sigma_{s+j d}}$

$$
\begin{aligned}
& =\frac{26.16 \times 10^{6}}{150 \times 0.87 \times 225} \\
& =890.932 \mathrm{~mm}^{2}
\end{aligned}
$$

Using 12 mm dia bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{840.932}=126.943 \mathrm{~mm}$
Provide 12 mm die bars at 1 surmc 840.932 at ater face at Im below the tep as distributurn reifformet (horizantel)
At mid span, Ast $=m$

$$
\begin{aligned}
& \sigma_{\text {st }} \mathrm{fd} \\
= & \frac{13.08 \times 10^{6}}{150 \times 0.87 \times 225} \\
= & 445.466 \mathrm{~mm}^{2}
\end{aligned}
$$

Using 12 mm die bass, spacing $=\frac{\text { levouk } \frac{\pi}{4} \times 12^{2}}{445.466}=253.885 \mathrm{~mm}$
Hance pirvide 12 mn diseneter bars at 250 anck at inner fue at in below top as distaribition reinforcenet (horizantel)
(ii) Bottam poithen

Inlensity of pressure at base of welle $P_{a}=2(1)$ It

$$
\begin{aligned}
& =9.81 \times 3 \\
& =29.43 \mathrm{ks}^{2}
\end{aligned}
$$

$$
\text { Totel pressure }=\frac{1}{2} \times 29.43 \times 1=14915 \mathrm{kN}
$$

$$
\text { Mamat }=14.715 \times \frac{1}{3}=4.905 \mathrm{kwn}
$$

$$
\begin{aligned}
A_{s t} & =\frac{m}{\text { ostjd }} \\
& =\frac{4.905 \times 10^{6}}{150 \times 0.87 \times 225} \\
& =167.05 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\text { min Ast }=0.3116 D=\frac{0.3}{100} \times 1000 \times 250=750 \mathrm{~mm}^{2}
$$

Provide 12 mm drameter bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{750}$

$$
=150.796 \mathrm{~mm}
$$

Provide 12 mm diameter bars at 150 mmck ice face in the vertical direction for bottom in height. This space was doullast for upper portion. Hera provide 12 mm diameter burs at 300 mmck at height in from bottom
Steep 5-Design of top slab

$$
\frac{L}{B}=\frac{10}{4}=2572
$$

Hence the slab will be designed as ore way sled Cod colulation
Assuring sld s thicuess as $2.5 \mathrm{~cm}, \quad(d=150-25=125 \mathrm{mn})$
Self weight of $s_{\mathrm{c}} \mathrm{s}=0.25 \times 1 \times 25=3.75 \mathrm{wm}^{2}$
live lead (assure)

$$
=2 \mathrm{k} / \mathrm{m}^{2}
$$

Total load, $\omega \quad .5 .75 \mathrm{kw} / \mathrm{m}^{2}$
Iffecture span

$$
\text { de of supports }=\frac{4+\frac{0.25}{2}+\frac{0.25}{2}: 4.25 \mathrm{~m}}{\text { left }}=4.25 \mathrm{~m}
$$

Monet

$$
M=\frac{\omega l^{2}}{8}=\frac{5-75 \times 4.25^{2}}{8}=12.982 \mathrm{kum}
$$

Cher for depth

$$
\begin{aligned}
& M=Q b d^{2} \\
& 12.982 \times 10^{6}=1.16 \times 1000 \times d^{2} \\
& \Rightarrow d=105.789 \mathrm{~mm} \text { (12 sm (Hence self) }
\end{aligned}
$$

Reiforiement

$$
\begin{aligned}
& A_{I t}=\frac{M}{a s+J d}=\frac{12.982 \times 10^{66}}{150 \times 0.87 \times 125}=795.83 \mathrm{~mm}^{2} \\
& M \text { in } A_{J}=0.31 .6 D=\frac{0.3}{100} \times 1000 \times 150=450 \mathrm{~m}^{2}
\end{aligned}
$$

Provide rom chanter bios, spacing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{795.831}=142.112 \mathrm{~mm}$
Provide 12 mm diameter bors at irbm ch as main bars Dislaibutar bass, provide comm bass, spacing $=\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{450}$
Provide 10 mn derideler bars at $170 \mathrm{mmc} /=174.533 \mathrm{~mm}$ Stepb-Design of bottom slate, as distribution burs

If there were no sib soil water only nominal (min) reinforcement will be required. Because of saturated sill there will be uplift pressure on bottom slab.
Assuming thiduess of bottom slabs ar 300 mm , height updo ground level

$$
H_{1}=3+0.3=3.3 \mathrm{~m}
$$

Uplift pressure an bolton slab, $\quad \mathrm{P}_{u}=D_{w} H_{1}=9.81 \times 3.3$

$$
=32.373 \mathrm{k} / \mathrm{m}^{2}
$$

The whole tank must be checked, against flotation
when the tank is empty.
Total upward flotation force, $P_{u}: P_{u} \times B \times C$

$$
\begin{aligned}
& =32.373 \times 4 \times 10 \\
& =1294.92 \mathrm{kw}
\end{aligned}
$$

Total downward force is computed from weight of tar,

$$
\begin{aligned}
& \rightarrow \text { Weight of base slab }=4 \times 10 \times 0.3 \times 25=300 \mathrm{~kW} \\
& \rightarrow \text { weight of lang well }=0.25 \times 1 \text { L } \times{ }^{11} \times 25 \times 2=385 \mathrm{kw} \\
& \rightarrow \text { Weight of short will }=0.25 \times 4 \times 3 \times 25 \times 2=150 \mathrm{~kW}
\end{aligned}
$$

$$
\rightarrow \text { weight of roof sloes }=\cdots \times 10 \times 0.15 \times 25=150 \mathrm{k}
$$

Downward force is less then the upward
flotation force. Hence provide projections of base slab beyond the face of wertreal walls by distance ' x ' all around so that wight of soil column supported by the projections will provide additional downward force. It is assumed that if the tank is flared, the earth would rupture on vertical planes shown by dotted lines.

$$
\begin{aligned}
& \rightarrow \text { weight of soil supported by }=1 \mathrm{cl} \times \text { unit wt } \\
& \text { projection } x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Totel downuard force }=1428 x+(4.5+2 x)(10.5+2 x) 7.5 \\
& \\
& +375+150+150 \\
& = \\
& =1428 x+\left(47.25+9 x+21 x+4 x^{2}\right) 75 \\
& \\
& +625 \\
& =
\end{aligned}
$$

$$
\text { Total down ward force }=30 x^{2}+1653 x+1029.375
$$

Total uplifa force $=32.373[4+(2 \times 0.25)+2 x]+$

$$
\begin{aligned}
& \text { (0.) upwerd flalation } {[10+(2 \times 0.25)+2 x] } \\
& \text { fore } \\
&= 32.373[4.5+2 x][10.5+2 x] \\
&= 32.373\left[47.25+9 x+21 x+6 x^{2}\right]
\end{aligned}
$$

$$
\text { Tokl upiard fore }=1529.624+971.19 x+129.492 x^{2}-12
$$

$$
\begin{align*}
& \rightarrow \text { weight of base sleb }=[4+(2 \times 0.25)+2 x] \times[10+(2 \times 0.25)+2 z] \\
& \times 0.3 \times 25 \\
& =(4.5+2 x)(10.5+2 x) \times 7.5 \mathrm{kN} \\
& \rightarrow \text { weight of longwall }=375 \mathrm{~kW} \\
& \rightarrow \text { weight of short wall }=150 \mathrm{~kW} \\
& \rightarrow \text { weight of reof shab }=150 \mathrm{kN} \\
& \text { Totel dounnead force }=2103+\left(\begin{array}{c}
4.5 \\
5
\end{array}+2 x\right)(10.5+2 x) 7.5 \\
& =2103+\left(47.25+9 x+21 x+4 x^{2}\right) 7 \cdot 5 \\
& =2103+354.375+225 x+30 x^{2} \\
& \text { Totel dounward fore }=2457.325+225 x+30 x x^{2} \tag{1}
\end{align*}
$$

As the botton slab is projected an its sides, height for colculeting uplift pressure 'H' gets relucell to $(3.3-0.3) 3 \mathrm{~m}$.
\therefore Uplifa pressure on bottan slad, $P u=:-19.81 \times 3$

$$
=29.43 \mathrm{k} / \mathrm{m}^{2}
$$

Total upward fletation force, Pu $=P u \times B \times C$

$$
\begin{align*}
& =29.43[4+(2 \times 0.25)+2 x][10+(2 \times 0.25)-12 x] \\
& =29.43[4.5+2 x][10.5+2 x] \\
& =29.43\left[47.25+9 x+21 x+4 x^{2}\right] \\
\text { Totel }{ }_{\text {puad }} & =1390.568+882.9 x+117.72 x^{2} \tag{2}
\end{align*}
$$ force

Feruating (1) $+(1)$

$$
\begin{aligned}
& \text { Fquating (1) } \\
& \Rightarrow 30 x^{2}+1653 x+1029.375=1390.568+889.9 x+117.72 x^{2} \\
& 87.72 x^{2}-770.1 x+361.193=0 \\
& x=8.282 \mathrm{~m}, 0.497 \mathrm{~m} \\
& \text { Talang } x=0.497 \mathrm{~m}(\text { loost }) \simeq 0.5 \mathrm{~m} \\
&
\end{aligned}
$$

Check for flatation
Sub value of x in ean (1) +(2),

$$
\begin{aligned}
\text { Total downward force } & =30 x^{2}+1653 x+1029.375 \\
& =\left(30 \times 0.5^{-2}\right)+(1653 \times 0.5)+1029.375 \\
& =1863.375 \mathrm{kw}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total upward force } & =1390.568+882.9 x+117.72 x^{2} \\
& =1390.568+(882.9 \times 0.5)+\left(117.72 \times 0.5^{2}\right) \\
& =1861.448 \mathrm{~kW}
\end{aligned}
$$

Fader of safety against flatatran $=$ Total downward force Total upward force

$$
=\frac{1863.375}{1861.448}
$$

$$
\text { A factor of sati on }=1.001
$$

$$
\begin{aligned}
\therefore \text { For } & =1.1=\frac{30 x^{2}+1653 x+1029.375}{1390.568+882.9 x+117.72 x^{2}} \\
x & =0.836 \mathrm{~m}=0.85 \mathrm{~m}
\end{aligned}
$$

Now, Total downward fore $=\left(30 \times 0.85^{2}\right)+(1653 \times 0.85)+1029.375$

$$
\begin{aligned}
& =2456.1 \mathrm{kw} \\
\text { Total upward force } & =1390.568+(882.9 \times 0.85)+\left(117.72 \times 0.85^{2}\right) \\
& =2226.086 \mathrm{kw}
\end{aligned}
$$

$$
\text { Fops against flatiron }=\frac{2156.1}{2226.086}=1.103
$$

Hance alk
The base sld will be designed by one way sleds. Considering i metre length of slob,

\rightarrow Uplift pressure, $P_{u}=4_{w} H_{1}=9.81 \times 3.3=32.375 \mathrm{kN} / \mathrm{m}^{2}$

$$
\text { Self wt of scad }(\mathrm{pum})=1 \times 1 \times 0.3 \times 25=7.5 \mathrm{wa} / \mathrm{m}^{2}
$$

\therefore Net upward pressure $=32.373-7.5=24.873 \mathrm{ku}^{2}$
\rightarrow Weight of wall perm $=0.25 \times 3 \times 1 \times-25=18.75 \mathrm{k} / \mathrm{cm}^{2}$
\rightarrow weight of raf slab transferred $=0.15 \times(2+0.25) \times 1^{2} \times 25=8.478 \mathrm{kN} / \mathrm{m}^{2}$ to each wall perm
\rightarrow weight of esth on projection $=0.85 \times 3 \times 1 \times 17^{\text {Lsat }}=43.35 \mathrm{kN} / \mathrm{m}$
Net unbalanced fore $m=$ Total upward force - weight f tank

$$
\begin{aligned}
& =(32.373 \times 6.2 \times 1)-[2 \times(18.75+8.438+43.35)] \\
& =59.637 \mathrm{k}
\end{aligned}
$$

Reaction on each will $=59.637 / 2=29.8191 \mathrm{w}$
\rightarrow Soil pressure from sides, Intensity, $\beta=|c a \nu|^{\prime} H+\Delta \omega H$
Where $\Delta^{\prime}=L_{\text {sat }}-L_{u}=17-7.81=7.191 \mathrm{ww}^{3} \mathrm{~m}^{3}$

$$
P_{a}=(0.333 \times 7.19 \times 3)+(7.81 \times 3)=36.613 \mathrm{kw}^{2} \mathrm{~m}^{2}
$$

Total Glue earth pressure $=\frac{1}{2} \times 36.613 \times 3$
$=54.92 \mathrm{kw} / \mathrm{m}$ acting at $h / 3$ flem base $0.3+\frac{3}{7}=1.8 \mathrm{~m}$

$$
\begin{aligned}
& \text { Beding monat at adge }=\left(24.873 \times 0.85 \times \frac{0.85}{2}\right)+(54.92 \times 1.3) \\
& \text { of cotilower pothen } \\
& \text { Chottom fiee) } \\
& -\left(43.35 \times 0.85 \times \frac{2.85}{2}\right) \\
& =64.721 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
& -\left[43.35 \times 0.85 \times\left(\frac{0.85}{2}+2.25\right)\right] \\
& -\left(29.819 \times \frac{1.25}{2}\right)-\left(18.25 \times \frac{4.25}{2}\right) \\
& -\left(8.438 \times \frac{4.25}{2}\right) \\
& =119.515+71.396-98.567-63.365 \\
& -39.844-17.931 \\
& =-28.796 \mathrm{kNm}
\end{aligned}
$$

$\rightarrow M=Q b d^{2}$, Taluing max moment, $64.721 \times 10^{6}=1.16 \times 1000 \times d^{2}$

$$
d=236.21 \mathrm{~mm}
$$

Thake $d=250 \mathrm{~mm}, D=d$ troues $=280+50=300 \mathrm{~mm}$ (Scme as

$$
\rightarrow A_{s L}=\frac{M}{(\text { betion }} \text { fin) }=\frac{64.721 \times 10^{6}}{156 \times 0.87 \times 250}=1983.785 \mathrm{~mm}^{2}
$$

Provide 16 mm die bars, Spacing: $\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{1987.785}=101.353 \mathrm{~mm}$ Provide 16 ma diameter buers at loumn cle at bottom face

$$
\Rightarrow \text { Ast }(\text { top fuce })=\frac{M}{\sigma_{s} t f d}=\frac{28.79 \times 10^{6}}{130 \times 0.87 \times 250}=882.636 \mathrm{~mm}
$$

Provide 12 m dionietes bars, spacing $=\frac{1000+\frac{\pi}{4} \times 1 y^{2}}{882.636}=128.136 \mathrm{~mm}$
Provide 12 mm derinater bars at
Provide 12 ma dranater bars at 120 mm cl 882.636 at tup fice
\Rightarrow Distribuitios seiforenat $=0.31 .5 D=\frac{0.3}{100} \times 1000 \times 300=900 \mathrm{~mm}{ }^{2}$
log walls
Summary
Tank empty with soil - outride face-vertacal rft-piessure (b_{w}, ν^{\prime}) outside - horizontal rit - min Att

Tank full with water and _ inner face-wertical oft -pressure $\left(\nu_{W}\right)$ no earth outride

- horizontal rAt - min Aft Short wells
Tank empty with soil - top portion - support manet - outer face - borizatdel culade

Tank fill with water

- bottumportion-Ceitileules - veilucel-outside
and no earth outside
- bottom portion-centlever-neetied -inside

Ex No. 4

INTZE TYPE WATER TANK
Design the Intze type water tank with capacity of one million litres, supported on an elevated tower comprising of 8 columns. The base of the tank is 16 m above the ground level and the depth of the foundation is 1 m below the ground level. Adopt M20 grade concrete and Fe 415 Steel.

DESIGN DATA

- Capacity of tank $=1$ million litres $=1000 \mathrm{~m}^{3}$
- Base of tank $=16 \mathrm{~m}$ above ground level
- Depth of foundation $=1 \mathrm{~m}$ above ground level
- Grade - M20 \& Fe415
- Codes - IS 456 \& IS 3370

SOLUTION

Step 1 - Permissible stresses

Permissible stress in direct tension (tank wall), $\sigma_{\mathrm{cl}}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 3370 (Part II) - 1965, Table 1)

Permissible stress in direct tension (dome \& ring beam), $\sigma_{\mathrm{ct}}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456-2000, Pg 80)

Permissible stress in steel, $\sigma_{\mathrm{st}}=0.6 \mathrm{fy}=150 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 800)
Permissible stress in direct compression, $\sigma_{c c}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456-2000, Table 21)
Permissible stress in bending compression, $\sigma_{\mathrm{cbc}}=7 \mathrm{~N} / \mathrm{mm}^{2}$ (IS : 456-2000, Table 21)
$\mathrm{m}=280 / 3 \sigma_{\mathrm{cbc}}=280 /(3 * 7)=13.333$
$\mathrm{k}=1 /\left[1+\left(\sigma_{\mathrm{st}} / \mathrm{m} \sigma_{\mathrm{cbc}}\right)\right]=0.38$
$\mathrm{j}=1-\mathrm{k} / 3=0.87$
$\mathrm{Q}=0.5 \sigma_{\mathrm{cbc}} \mathrm{kj}=1.16$

Step 2 - Dimensions of tank

- Depth of tank $=0.65 \mathrm{D}$ to $0.75 \mathrm{D}=0.75 \mathrm{D}_{\mathrm{t}}$ where ' D_{t} ' is the diameter of tank at top Volume of tank $=\left(\pi \mathrm{D}_{\mathrm{t}}{ }^{2} / 4\right) * 0.75 \mathrm{D}_{\mathrm{t}}=1000$

$$
\mathrm{D}_{\mathrm{t}}=12 \mathrm{~m}
$$

- Depth of tank $=0.75 \mathrm{D}_{\mathrm{t}}=9 \mathrm{~m}$
- Central rise $=(1 / 5$ to $1 / 6) D_{t}=(1 / 6) D_{t}=2 m$
- Radius of dome, $\mathrm{R}^{2}=\left[6^{2}+(\mathrm{R}-2)^{2}\right]$

$$
\mathrm{R}=10 \mathrm{~m}
$$

- $\sin \theta=6 / 10=0.6, \cos \theta=8 / 10=0.8, \theta=36.87$

Step 3 - Design of top spherical dome

- Thickness of top dome, $\mathrm{t}=100 \mathrm{~mm}$ (Assume)
- Load calculation

Self weight $=0.1 * 25=2.5 \mathrm{kN} / \mathrm{m}^{2}$
Live load \& finishes $=2 \mathrm{kN} / \mathrm{m}^{2}$
Total load, $\quad \mathrm{w}=4.5 \mathrm{kN} / \mathrm{m}^{2}$

- Meridional stress

Meridional thrust, $\mathrm{T}_{1}=\mathrm{wR} / 1+\cos \theta=\left(4.5^{*} 10\right) /(1+0.8)=25 \mathrm{kN} / \mathrm{m}$
Meridional stress $\quad=\mathrm{T}_{1} / \mathrm{t}=25 / 100=0.25 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}$

- Hoop stress

Circumferential force, $\mathrm{T}_{2}=\mathrm{wR}\{\cos \theta-(1 /[1+\cos \theta]\}$

$$
=4.5 * 10 *\{0.8-(1 /[1+0.8]\}=11 \mathrm{kN} / \mathrm{m}
$$

Hoop stress $=\mathrm{T}_{2} / \mathrm{t}=11 / 100=0.11 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}$

- Reinforcement
$\mathrm{A}_{\mathrm{st}}=0.3 \% \mathrm{bd}=(0.3 / 100) * 1000 * 100=300 \mathrm{~mm}^{2}$
$\mathrm{S}=\left[1000 *(\pi / 4) * 8^{2}\right] / 300=167.55 \mathrm{~mm}$
Provide 8 mm dia bars at 160 mm c/c circumferentially \& meridionally

Step 4 - Design of top ring beam

- Reinforcement
\checkmark Hoop tension, $\mathrm{F}_{\mathrm{t}}=\mathrm{T}_{1} * \cos \theta * \mathrm{D}_{\mathrm{t}} / 2=25 * 0.8 * 6=120 \mathrm{kN}$

$$
\checkmark \quad \mathrm{A}_{\mathrm{st}}=\mathrm{F}_{\mathrm{t}} / \sigma_{\mathrm{st}}=\left(120 * 10^{3}\right) / 150=800 \mathrm{~mm}^{2}
$$

Provide 4 no's of 16 mm dia bars $\left(\mathrm{A}_{\mathrm{st}}=804.25 \mathrm{~mm}^{2}\right)$
\checkmark Minimum shear reinforcement is given by $\mathrm{A}_{\mathrm{sv}} /\left(\mathrm{b}^{*} \mathrm{~S}_{\mathrm{v}}\right)=0.4 /\left(0.87 * \mathrm{f}_{\mathrm{y}}\right)$
Provide 2 legged 6 mm dia stirrups at $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

- Size

Permissible stress in ring beam $=F_{t} /\left(A_{c}+\mathrm{mA}_{s t}\right)$

$$
\begin{aligned}
2.8 & =\left(120 * 10^{3}\right) /\left(\mathrm{A}_{\mathrm{c}}+13.33 * 804.25\right) \\
\mathrm{A}_{\mathrm{c}} & =32136.49
\end{aligned}
$$

Provide top ring beam of size $200 \times 200 \mathrm{~mm}$

Step 5 - Design of tank walls

- Horizontal reinforcement
\checkmark Hoop tension, $\quad \mathrm{F}_{\mathrm{t}}=\gamma_{\mathrm{w}} * \mathrm{H} * \mathrm{D}_{\mathrm{t}} / 2=9.81 * 9 * 6=529.74 \mathrm{kN} / \mathrm{m}$
$\checkmark \mathrm{A}_{\mathrm{st}}=\mathrm{F}_{\mathrm{t}} / \sigma_{\mathrm{st}}=\left(529.74 * 10^{3}\right) / 150=3531.6 \mathrm{~mm}^{2} / \mathrm{m}$
A_{st} on one face $=3531.6 / 2=1765.8 \mathrm{~mm}^{2} / \mathrm{m}$
Provide 20 mm dia bars, $\mathrm{S}=\left[1000^{*}(\pi / 4) * 20^{2}\right] / 1765.8=177.91 \mathrm{~mm}$
Provide 20 mm dia bars at $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ on both faces $\left(\mathrm{A}_{\mathrm{st}}=3695.99 \mathrm{~mm}^{2}\right)$

Height (from top)	Height (range from top)	$\mathbf{F}_{\mathbf{t}}$	$\mathbf{A}_{\mathbf{s t}}$ on one face	$\mathbf{A}_{\text {st }}$ provided
3	$0-3$	176.58	588.6	$12 @ 190$
6	$3-6$	353.16	1177.2	$16 @ 170$
9	$6-9$	529.74	1765.8	$20 @ 170$

- Size

Permissible stress in tank wall $=\mathrm{F}_{\mathrm{t}} /\left(\mathrm{A}_{\mathrm{c}}+\mathrm{mA}_{\mathrm{st}}\right)$

$$
\begin{aligned}
& 1.2=\left(529.74 * 10^{3}\right) /\left(\mathrm{A}_{\mathrm{c}}+13.33 * 3695.99\right) \\
& \mathrm{A}_{\mathrm{c}}=392182.45
\end{aligned}
$$

$$
1000 * t=392182.45
$$

Provide tank wall of thickness 400 mm at bottom and gradually reduced to 200 mm at top.

- Vertical reinforcement
$\checkmark \mathrm{A}_{\mathrm{st}}=0.3 \% \mathrm{bd}=(0.3 / 100) * 1000 * 300=900 \mathrm{~mm}^{2}$
$\checkmark \mathrm{A}_{\mathrm{st}}$ on one face $=900 / 2=450 \mathrm{~mm}^{2}$
Provide 10 mm dia bars, $\mathrm{S}=\left[1000 *(\pi / 4) * 10^{2}\right] / 450=174.53 \mathrm{~mm}$
Provide 10 mm dia bars at $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ on both faces $\left(\mathrm{A}_{\mathrm{st}}=923.99 \mathrm{~mm}^{2}\right)$

Step 6 - Design of bottom ring beam

- Reinforcement
\checkmark Load due to top spherical dome $=\mathrm{T} * \sin \theta=25 * 0.6=15 \mathrm{kN} / \mathrm{m}$
Load due to top ring beam $=0.2 * 0.2 * 25=1 \mathrm{kN} / \mathrm{m}$
Load due to tank wall $=0.3 * 9 * 25=67.5 \mathrm{kN} / \mathrm{m}$
Assuming size of bottom ring beam as $1.2 \mathrm{~m} \times 0.6 \mathrm{~m}$, load due to bottom ring beam

$$
=1.2 * 0.6 * 25=18 \mathrm{kN} / \mathrm{m}
$$

Total vertical load $=101.5 \mathrm{kN} / \mathrm{m}$
Total horizontal load $=101.5 * \cot 45=101.5 \mathrm{kN} / \mathrm{m}$
\checkmark Hoop tension due to vertical load, $\mathrm{F}_{\mathrm{t}}=101.5 * \mathrm{D}_{\mathrm{t}} / 2=609 \mathrm{kN}$
\checkmark Hoop tension due to water, $\mathrm{F}_{\mathrm{t}}=\gamma_{\mathrm{w}} * \mathrm{H} * \mathrm{~h} * \mathrm{D}_{\mathrm{t}} / 2=9.81 * 9 * 0.6 * 6=317.84 \mathrm{kN}$
\checkmark Hoop tension, $\mathrm{F}_{\mathrm{t}}=609+317.84=926.84 \mathrm{kN}$

$$
\checkmark \mathrm{A}_{\mathrm{st}}=\mathrm{F}_{\mathrm{t}} / \sigma_{\mathrm{st}}=\left(926.84 * 10^{3}\right) / 150=6178.93 \mathrm{~mm}^{2}
$$

Provide 8 no's of 32 mm dia bars $\left(\mathrm{A}_{\mathrm{st}}=6433.98 \mathrm{~mm}^{2}\right)$
\checkmark Minimum shear reinforcement is given by $\mathrm{A}_{\mathrm{sv}} /\left(\mathrm{b} * \mathrm{~S}_{\mathrm{v}}\right)=0.4 /\left(0.87 * \mathrm{f}_{\mathrm{y}}\right)$
Provide 2 legged 8 mm dia stirrups at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

Step 7 - Design of conical dome

- Dimensions

Length of bottom of tank $=12-2-2=8 \mathrm{~m}$
Average dia of conical dome, $\mathrm{D}_{\mathrm{c}}=(12+8) / 2=10 \mathrm{~m}$
Average depth of water, $\mathrm{H}_{\mathrm{c}}=9+(2 / 2)=10 \mathrm{~m}$

- Load Calculation

Weight of water above conical dome $=\left(\pi \mathrm{D}_{\mathrm{c}} * \mathrm{H}_{\mathrm{c}} * 2\right) * 9.81=6163.8 \mathrm{kN}$
Assuming thickness of conical dome as 600 mm , self weight of conical dome

$$
=\left(\pi \mathrm{D}_{\mathrm{c}} * 0.6 * \sqrt{ }\left(2^{2}+2^{2}\right)\right) * 25=1332.865 \mathrm{kN}
$$

Total horizontal load $=101.5 * \pi \mathrm{D}_{\mathrm{t}}=101.5 * \pi * 12=3826.46 \mathrm{kN}$
Total load $=11323.125 \mathrm{kN}$

Load $/ \mathrm{m}$ length $=11323.125 /\left(\pi^{*} \mathrm{D}_{\mathrm{b}}\right)=11323.125 /\left(\pi^{*} 8\right)=450.533 \mathrm{kN} / \mathrm{m}$

- Meridional stress

Meridional thrust, $\mathrm{T}_{1}=450.533 * \operatorname{cosec} 45=637.15 \mathrm{kN} / \mathrm{m}$
Meridional stress $=T_{1} / \mathrm{t}=637.15 / 600=1.062 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}$

- Horizontal Reinforcement

\checkmark Hoop tension, $\mathrm{F}_{\mathrm{t}}=(\mathrm{p} \operatorname{cosec} \theta+\mathrm{q} \cot \theta) * \mathrm{D}_{\mathrm{t}} / 2$
Where $\mathrm{p}=$ Water pressure $=9.81 * \mathrm{D}_{\mathrm{b}}=9.81 * 8=78.4 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{q}=$ Self weight of conical dome $=0.6 * 25=15 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{F}_{\mathrm{t}}=(78.4 \operatorname{cosec} 45+15 \cot 45) * 12 / 2=755.246 \mathrm{kN}$
$\checkmark \quad \mathrm{A}_{\mathrm{st}}=\mathrm{F}_{\mathrm{t}} / \sigma_{\mathrm{st}}=\left(755.246 * 10^{3}\right) / 150=5034.973 \mathrm{~mm}^{2}$
A_{st} on one face $=5034.973 / 2=2517.487 \mathrm{~mm}^{2}$
Provide 20 mm dia bars, $\mathrm{S}=\left[1000 *(\pi / 4) * 20^{2}\right] / 2517.487=124.791 \mathrm{~mm}$
Provide 20 mm dia bars at 120 mm c/c on both faces $\left(\mathrm{A}_{\mathrm{st}}=5235.988 \mathrm{~mm}^{2}\right)$

- Vertical reinforcement
$\checkmark \mathrm{A}_{\mathrm{st}}=0.3 \% \mathrm{bd}=(0.3 / 100) * 1000 * 600=1800 \mathrm{~mm}^{2}$
$\checkmark \mathrm{A}_{\mathrm{st}}$ on one face $=1800 / 2=900 \mathrm{~mm}^{2}$
Provide 12 mm dia bars, $\mathrm{S}=\left[1000 *(\pi / 4) * 12^{2}\right] / 900=125.66 \mathrm{~mm}$
Provide 12 mm dia bars at $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ on both faces $\left(\mathrm{A}_{\mathrm{st}}=1884.956 \mathrm{~mm}^{2}\right)$
- Stress check

Permissible stress in conical dome $=F_{t} /\left(\mathrm{A}_{\mathrm{c}}+\mathrm{mA}_{\mathrm{st}}\right)$

$$
\begin{aligned}
& =\left(755.246 * 10^{3}\right) /(600 * 1000+13.33 * 5235.988) \\
& =1.128 \mathrm{~N} / \mathrm{mm}^{2}<2.8 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Step 8 - Design of bottom spherical dome

- Diameter at bottom, $\mathrm{D}_{\mathrm{b}}=8 \mathrm{~m}$

Central rise $=(1 / 5$ to $1 / 6) \mathrm{D}_{\mathrm{b}}=(1 / 6) \mathrm{D}_{\mathrm{b}}=1.33 \mathrm{~m}$
Radius of dome, $\mathrm{R}^{2}=\left[4^{2}+(\mathrm{R}-1.33)^{2}\right]$

$$
\mathrm{R}=6.68 \mathrm{~m}
$$

$\sin \theta=4 / 6.68=0.6, \cos \theta=5.35 / 6.68=0.8, \theta=36.87$

- Thickness of bottom dome $=300 \mathrm{~mm}$ (Assume)
- Load calculation

Self weight $=(2 \pi * 6.68 * 1.33) * 0.3 * 25=418.667 \mathrm{kN}$

Volume of water $=\left[\pi r^{2} h-(2 / 3) * \pi r^{2} h\right]$

$$
=\left[\pi^{*} 4^{2} * 11-(2 / 3) * \pi * 4^{2} * 1.33\right]=508.352 \mathrm{~m}^{3}
$$

Weight of water $=508.352 * 9.81=4986.933 \mathrm{kN}$
Total load $\quad=5405.6 \mathrm{kN}$
$\mathrm{Load} / \mathrm{m}^{2}=5405.6 /\left(\pi^{*} 4^{2}\right)=107.541 \mathrm{kN} / \mathrm{m}^{2}$

- Meridional stress

Meridional thrust, $\mathrm{T}_{1}=\mathrm{wR} / 1+\cos \theta=(107.541 * 6.68) /(1+0.8)=399.097 \mathrm{kN} / \mathrm{m}$

Meridional stress $=\mathrm{T} / \mathrm{t}=399.097 / 300=1.33 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}$

- Hoop stress

Circumferential force, $\mathrm{T}_{2}=\mathrm{wR}\{\cos \theta-(1 /[1+\cos \theta]\}$

$$
=107.541 * 6.68 *\{0.8-(1 /[1+0.8]\}=175.603 \mathrm{kN} / \mathrm{m}
$$

Hoop stress $=175.603 / 300=0.585 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}$

- Reinforcement
$\mathrm{A}_{\mathrm{st}}=0.3 \% \mathrm{bd}=(0.3 / 100) * 1000 * 300=900 \mathrm{~mm}^{2}$
$\mathrm{S}=\left[1000 *(\pi / 4) * 12^{2}\right] / 900=125.66 \mathrm{~mm}$
Provide 12 mm dia bars at 120 mm c/c circumferentially \& meridionally

Step 9 - Design of girder

- Thrust from conical dome, $\mathrm{T}_{1}=637.15 \mathrm{kN} / \mathrm{m}, \alpha=45$

Thrust from bottom spherical dome, $\mathrm{T}_{2}=399.097 \mathrm{kN} / \mathrm{m}, \beta=36.87$

- Stress check

$$
\begin{aligned}
\text { Horizontal force } & =\mathrm{T}_{1} \cos \alpha-\mathrm{T}_{2} \cos \beta \\
& =131.256 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Hoop tension, $\mathrm{T}=131.256 * \mathrm{D}_{\mathrm{b}} / 2$

$$
\begin{aligned}
& =131.256 * 8 / 2 \\
& =525.024 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\text { Hoop stress } & =\left(525.024 * 10^{3}\right) /(600 * 1200) \\
& =0.729 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

- Load on girder
\checkmark Vertical load on beam $=\mathrm{T}_{1} \sin \alpha+\mathrm{T}_{2} \sin \beta=689.99 \mathrm{kN} / \mathrm{m}$
\checkmark Assuming size of girder as $0.6 \mathrm{~m} \times 1.2 \mathrm{~m}$, load due to self weight of girder

$$
=0.6 * 1.2 * 25=18 \mathrm{kN} / \mathrm{m}
$$

Total load, $w=707.99 \mathrm{kN} / \mathrm{m}$

Total design load on girder, $\mathrm{W}=707.99 * \pi * \mathrm{D}_{\mathrm{b}}=707.99 * \pi * 8=17793.73 \mathrm{kN}$

- BM \& SF

For 8 columns,
\checkmark Negative $\mathrm{BM}=0.0083 * \mathrm{~W} * \mathrm{R}=0.0083 * 17793.73 * 4=590.752 \mathrm{kNm}$
\checkmark Positive $\mathrm{BM}=0.0041 * \mathrm{~W} * \mathrm{R}=0.0041 * 17793.73 * 4=291.817 \mathrm{kNm}$
\checkmark Torsional moment $=0.0006 * W * R=0.0006 * 17793.73 * 4=42.705 \mathrm{kNm}$
\checkmark Shear force at support $=\left[\mathrm{w}^{*} \mathrm{R} *(\pi / 4)\right] / 2=\left[707.99 * 4^{*}(\pi / 4)\right] / 2=1112.108 \mathrm{kN}$
\checkmark SF at maximum tension $=1112.108-[\mathrm{w} * \mathrm{R} *(9.55 * \pi / 180)]$

$$
=1112.108-[707.99 * 4 * 9.55 * \pi / 180)]=640.08 \mathrm{kN}
$$

Table 4.1 Moment Coefficients in Circular Girders Supported on Columns Moment Coefficients

Number of columns n		Negative Bending moment at support K_{1}	Positive Bending moment at centre of spans K_{2}	Maximum Twisting moment or Torque K_{3}	Angular distance for maximnm torsion
4	90°	0.0342	0.0176	0.0053	$19^{\circ}-12^{\prime}$
5	60°	00148	0.0075	0.0015	$12^{\circ}-44^{\prime}$
8	45°	0.0083	0.0041	0.0006	$9^{\circ}-33^{\prime}$
10	36°	0.0054	0.0023	0.0003	$7^{\circ}-30^{\prime}$
12	30°	0.0037	0.0014	0.0017	$7^{\circ}-15^{\prime}$

$\mathrm{A}_{\text {st }}$ at support:
$\mathrm{M}=590.752 \mathrm{kNm}, \mathrm{V}=1112.108 \mathrm{kN}$
$d=\sqrt{\frac{M}{Q b}}=\sqrt{\frac{590.752 \times 10^{6}}{1.16 \times 600}}=921.293 \mathrm{~mm}<1200 \mathrm{~mm}$
Hence safe
Adopt effective depth $=1150 \mathrm{~mm}$, Cover $=50 \mathrm{~mm}$
$A_{s t}=\frac{M}{\sigma_{s t} j d}=\frac{590.752 \times 10^{6}}{150 \times 0.87 \times 1150}=3936.378 \mathrm{~mm}^{2}$
Minimum $A_{s t}=0.3 \% b d=\left(\frac{0.3}{100}\right) \times 600 \times 1200=2160 \mathrm{~mm}^{2}$

Provide 5 no's of 32 mm diameter $\left(\mathrm{A}_{\mathrm{st}}=4021.24 \mathrm{~mm}^{2}\right)$

$$
\begin{aligned}
& \tau_{v}=\frac{V_{u}}{b d}=\frac{1112.102 \times 10^{3}}{600 \times 1150}=1.612 \mathrm{~N} / \mathrm{mm}^{2} \\
& \frac{100 A_{s t}}{b d}=\frac{100 \times 4021.24}{600 \times 1150}=0.583, \text { Hence } \tau_{c}=0.327 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Also $\tau_{c}<\tau_{v}$, hence provide shear reinforcement.
$V_{s}=V_{u}-\tau_{c} b d=\left(1112.102 \times 10^{3}\right)-(0.327 \times 600 \times 1150)=806.472 \mathrm{kN}$
Provide 4 legged 12 mm dia stirrups, $A_{s v}=4 \times(\pi / 4) \times 10^{2}=314.159 \mathrm{~mm}^{2}$
Spacing is given by $V_{u s}=\frac{0.87 f_{y} A_{s v} d}{S_{v}}$
Substituting the values, $\mathrm{S}_{\mathrm{v}}=161.743 \mathrm{~mm}$
Provide 4 legged 12 mm dia stirrups at $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
A_{st} at middle:
$\mathrm{M}=291.817 \mathrm{kNm}, \mathrm{V}=640.08 \mathrm{kN}$
$A_{s t}=\frac{M}{\sigma_{s t} j d}=\frac{291.817 \times 10^{6}}{150 \times 0.87 \times 1150}=1944.47 \mathrm{~mm}^{2}$
Minimum $A_{s t}=0.3 \% b d=\left(\frac{0.3}{100}\right) \times 600 \times 1200=2160 \mathrm{~mm}^{2}$
Provide 5 no's of 25 mm diameter $\left(\mathrm{A}_{\mathrm{st}}=2454.37 \mathrm{~mm}^{2}\right)$
$\tau_{v}=\frac{V_{u}}{b d}=\frac{640.08 \times 10^{3}}{600 \times 1150}=0.928 \mathrm{~N} / \mathrm{mm}^{2}$
$\frac{100 A_{s t}}{b d}=\frac{100 \times 2454.37}{600 \times 1150}=0.356$
Hence $\tau_{c}=0.25 \mathrm{~N} / \mathrm{mm}^{2}$

Also $\tau_{c}<\tau_{v}$, hence provide shear reinforcement.
$V_{s}=V_{u}-\tau_{c} b d=\left(640.08 \times 10^{3}\right)-(0.25 \times 600 \times 1150)=467.58 \mathrm{kN}$
Provide 4 legged 12 mm dia stirrups, $A_{s v}=4 \times(\pi / 4) \times 10^{2}=314.159 \mathrm{~mm}^{2}$

Spacing is given by

$$
V_{u s}=\frac{0.87 f_{y} A_{s v} d}{S_{v}}
$$

Substituting the values, $\mathrm{S}_{\mathrm{v}}=278.97 \mathrm{~mm}$
Provide 4 legged 12 mm dia stirrups at $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Stop 10 - Design of Columns of supporting hewer
\rightarrow The supporting hewer comprises of 8 column equally spaced on a circle of 8 m dimeter. (Equal te bottom dome dianaters

$$
\rightarrow \text { Spacing of bracing }=4 \mathrm{~m}
$$

\rightarrow Base of tank is 16 m above grand level
Goad on columns (weight)

$$
\begin{aligned}
\rightarrow \text { Vestal lead on each column } & =\frac{\text { Total design }}{\text { due te wight }} \begin{aligned}
\text { load on guider } \\
\text { Nu f Columns }
\end{aligned} \\
& =\frac{17793.73}{8} \\
& =2224.216 \mathrm{kw}
\end{aligned}
$$

4Solf weight of column of height 16 m and die $650 \mathrm{rm}=\frac{\pi}{4} \times 0.65^{2} \times 16 \times 25=132.732 \mathrm{kw}$
\rightarrow Self weight of bracing (3 no's at um interudos size of bracing is $500 \mathrm{~mm} \times 500 \mathrm{~mm}$.

For one column $=\frac{471.239}{8}=58.905^{\circ} \mathrm{kN}$
Total vertical load on each column $=2224.216+132.732$

$$
\begin{align*}
\text { due to weight } & +58.905 \\
= & 2415.853 \mathrm{kw} \tag{1}
\end{align*}
$$

wind force on columns
Intensity of wind pressure $=1.5 \mathrm{ka} / \mathrm{m}^{2}$
Reduction caefficiat for circular .- shapes $=0.7$
\rightarrow wind force on top dome and cyliderieal $=\left(\frac{H}{H}+\frac{D}{2}\right) \times 12 \times 0.7 \times 1.5$
\rightarrow wind fire on bottom ring beam $=1.2 \times 8=1261 \mathrm{w}$

\rightarrow wind force on fine columns $=5 \times 0.65 \times 16 \times 0.7 \times 1.5=54.61 \mathrm{w}$ (scolums gets exposed in ore duacectan)
\rightarrow Wind fore on tracings $=3 \times 0.5 \times 8 \times 1.5=18 \mathrm{~kW}$
\therefore Total wind fore $=126+10.08+21+56.6+18=226.681 \mathrm{w}$ Assuming point of contraflexure at mid; $\therefore \therefore$ height of calumn ant fixed at lase due to raft foundation, moments at base of colum is calculated as,

Fixing Monet, $M=$ Total wind for ex $\frac{\text { column height }}{2}$

$$
\begin{aligned}
& =226.68 \times \frac{4}{2} \\
& =453.36 \mathrm{kN}
\end{aligned}
$$

If M_{R} is momenta ot base of columns due to wind

$$
\begin{aligned}
M_{R}= & \left(126 \times\left[18+\left(\frac{9+2}{2}\right)\right]\right)+\left[21 \times\left(18+\frac{2}{2}\right)\right]+(10.08 \times 16) \\
& +(6 \times 12)+(6 \times 8)+(6 \times 4) \\
M_{R}= & 3623.28 \mathrm{kom} \\
M_{R}= & M_{R}+\frac{V}{r} \sum a^{2} \\
& M_{F} \rightarrow \text { Fixing Moment, } M_{R} \rightarrow M_{\text {manet }} \text { \& resistance }
\end{aligned}
$$

Where $\dot{v} \rightarrow$ Reaction
$r \rightarrow$ Recites $a \rightarrow$ Distance odom from cere

$$
\begin{aligned}
& 3623.28=453.36+\frac{v}{4}\left[\left(2 \times 4^{2}{ }^{2}+\left(4 \times 2.828^{2}\right)+\left(220^{2}\right)\right] .\right] \\
& 36.23 .28-453.36=16 \mathrm{~V}
\end{aligned}
$$

$$
\sin \theta=\frac{a}{4}
$$

$$
\sin +5=\frac{9}{4}
$$

$$
a=2.828 \mathrm{M}
$$

$$
\begin{equation*}
\text { Reaction, } v=198.121 \mathrm{w} \tag{2}
\end{equation*}
$$

Totel load on column = Yertreal lood due te weight + Teiden due te wind land (1)+(2))

$$
\begin{aligned}
& =2415.853+198.12 \\
P & =2613.973 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\text { Momed in cach colum } & =\frac{\text { Fixig monet }}{\text { No of alumns }}=\frac{453.36}{8} \\
M & =56.67 \mathrm{kmm}
\end{aligned}
$$

Reifforcemat in celum
Eccertriaty, $e=\frac{M}{p}=\frac{56.67 \times 10^{6}}{2613.973 \times 10^{3}}=21.68 \mathrm{~mm}$ I5 $456, P_{\text {g }} 42,25.4$, Minimum eceertricily is 20 mm Use bars of 32 mm chaineter and leteral hes of 10 mm diometar at 300 mm ck

$$
A_{S C}=12 \times \frac{\pi}{4} \times 32^{2}=9650.973 \mathrm{~mm}^{2}
$$

Effective area, $A_{c}=A_{c}+m \cdot A_{5}-$

$$
\begin{aligned}
& =\left(\frac{\pi \times 800^{2}}{4}\right)+(15 \times 13.333 \times 64.33 .98) \\
& =4.605 \times 10^{5} \mathrm{~mm}^{2}
\end{aligned}
$$

Fquivelat aree of column $=\left(\frac{\pi}{4} \times D^{2}\right)+m A_{s c}$

$$
\begin{aligned}
& =\left(\frac{\pi}{4} \times 650^{2}\right)+[13.33 \times 9650.973] \\
& =460.507 .447 \mathrm{~mm}
\end{aligned}
$$

Equivclast monet of iocria, $I_{e}=\frac{\pi 124}{64}+\frac{(m-1)}{8} A_{s c} d^{2}$ $d=D-6$ ver $=650-50=600 \mathrm{~mm}$

$$
\begin{aligned}
& =\frac{\pi \times 600^{4}}{64}+\frac{(13.333-1) \times 9650.973 \times 600^{2}}{8} \\
& =1.412 . \times 10^{19} \mathrm{~mm}^{4}
\end{aligned}
$$

According to is code, when offect of wind lad is considered, the permissisle stress im meterials may be racreased by $33 \% \%(33.33 \%=1.333)$
For sefety of calumn, we haw

$$
\begin{equation*}
\frac{\sigma_{c c}^{\prime}}{\sigma_{c c}}+\frac{\sigma_{c b c}{ }^{\prime}}{\sigma_{c b c}}<1 \tag{1}
\end{equation*}
$$

where $\begin{aligned} \sigma_{c c} \mid & \rightarrow \text { Diret compressive stress }=\frac{P}{R_{e}}=\frac{1}{2}, \ldots, i n\end{aligned}$
Ae \rightarrow Famindat are of colum
$\sigma_{c b} \mid \rightarrow$ Bending steess in colum $=\frac{M}{2}$
$2 \rightarrow$ Iely
Ie \rightarrow Equuvalat momat of ineilia

$$
y \rightarrow \text { cateoil }=T / 2
$$

$P, M \rightarrow$ Total lend and monat on column
$\sigma_{c c,} \sigma_{c b} \rightarrow$ Permissible conpressive steess (dired o bexting)

$$
\begin{aligned}
\sigma_{c c}^{\prime} & =\frac{p}{A}=\frac{2613.973 \times 10^{3}}{460507.147}=5.676 \mathrm{~N} / \mathrm{mm} \\
\sigma_{c b c} & =\frac{M}{2}, \quad 2=\frac{70}{g}=\frac{1.412 \times 10^{10}}{d / 2}=\frac{1.412 \times 10^{10}}{650 / 2}=4.345 \times 10^{7} \mathrm{~m}^{3} \\
& =\frac{s 6.67 \times 10^{6}}{4.345 \times 10^{3}}=1.304 \mathrm{~N}^{3} \mathrm{~mm}^{2} \\
\text { SuS } \operatorname{in}(1) & \Rightarrow \frac{5.676}{1.3335}+\frac{1.304}{1.333 \times 7}=0.9914
\end{aligned}
$$

Step 11 - Design of braces

$$
\begin{aligned}
\text { Monet in trace } & =2 \times \text { moment in colum } \\
& =2 \times 56.67 .=113.34 \mathrm{kmm}
\end{aligned}
$$

$$
A_{s}=\frac{n}{\sigma_{s t j d}}
$$

\therefore where $d=D-d^{\prime}=500-50=450 \mathrm{~mm}$

$$
=0.909
$$

Total load an fandation = Total weitied load on colure due to columns

$$
\begin{aligned}
& N_{0} \text { of colum } \\
= & 2415.853 \times 8 \\
= & 19326.824 \mathrm{kN}
\end{aligned}
$$

$\begin{aligned} & \text { Self weight of foundations }=10 \% \text { of botel lead (column) } \\ & \text { (Assume) }\end{aligned}$

$$
=\frac{10}{100} \times 1935^{6} .824
$$

\therefore Total load on foundations $=1932.682 \mathrm{kw}$
$=1926.824+1932.682$
$\begin{aligned} \text { Safe bearing capacity of col } & =250 \mathrm{ka} / \mathrm{m}^{2}\end{aligned}$

$$
\begin{aligned}
& \therefore \text { Area of foundation }=\frac{\text { Tote lead }}{\text { SBC }}=\frac{21259.506}{250} \\
& \text { Design of raft slab } \\
& \text { Proving a raft slab with caner }=85.038 \mathrm{~m}^{2}
\end{aligned}
$$ side of circular ring projections on either raft slab.

$$
\begin{aligned}
\text { Area }=\pi d \times b & =85.038 \\
\Rightarrow(\pi \times 8) \times b & =85.038 \\
b & =3.384 \mathrm{~m}
\end{aligned}
$$

Adopt a raft slabs having 5 M inner diameter and 11 m outer disinter

$$
\begin{aligned}
& \text { Ines chanter }=8-3.384=4.616 \mathrm{~m} \\
& \text { Outer chineter }=8+3.384=11.384 \mathrm{~m}
\end{aligned}
$$

Area of annular portion $=\frac{\pi}{4}\left(11.384^{2}-4.616^{2}\right)=85.409 \mathrm{~m}^{1}$

$$
\text { Monat of Inertie }=\frac{\pi}{64}\left(11.384^{4}-4.616^{4}\right)=802136 \mathrm{~m}^{4}
$$

The fundetion will be closigned for an awerage pressuce of, $p=$ Totel loat on fourdaluen due te colums
Area of annulas rafa.

$$
\begin{aligned}
& =\frac{19396.824}{85.409} \\
& =206.286 \mathrm{kw} \mathrm{~mm}^{2}
\end{aligned}
$$

owechery ' x ' $=\frac{1}{2}\left[\frac{1}{2}(11.384-4.616)-0.7\right]$

$$
x=1.31 .2 \mathrm{~m}
$$

Beading momat, $M=P \times x \times \frac{x}{2}=226.286 \times 1.342 \times 1 . \frac{342}{2}$

$$
\begin{aligned}
& M=Q S d^{2} \quad=203.766 \mathrm{kmm} \\
& 203.766 \times 10^{6}=0.869 \times 1000 \times d^{2} \\
& \Rightarrow d \quad=484.235 \mathrm{~mm}
\end{aligned}
$$

Provide $525 \mathrm{~m} n$ thicle sles with affective clapth $=525-40$ $d=485 \mathrm{mn}$

$$
\begin{aligned}
A S 1=\frac{M}{\sigma_{S}+\delta} d & =\frac{203.766 \times 10^{6}}{249 \times 0.909 \times 485} \\
& =1856.208 \mathrm{man}^{2}
\end{aligned}
$$

Prouide domen dioneler lar, spacing $=\frac{1000 \frac{\pi}{4} \times 20^{2}}{1856.208}$
Purucle romm diametes bars at 160 mm cle Minimum Ast $=0.31 .6 D=\frac{0.3}{10} \times 1000 \times 525=1575 \mathrm{~mm}^{2}$

Provide 10 mm dia bars, spaing $=\frac{1000 \times \frac{\pi}{4} \times 12^{2}}{1575.571}=199.46 \mathrm{~m}$ Povide 20 mn diameter as districution reifforcenest. Tesign of circular giveler
Total design loud on guedes, $\omega=19326.824 \mathrm{kw}$ (load on Load per metre rin: on girdes, $w=\frac{19326.824}{118}=768.99 \mathrm{kvms}$ For 8 colums.
Negature $B M=0.0083 W R=0.0083 \times 19326.824 \times 4=641.6511 \mathrm{~km}$
Pasiture $B M=0.0041 \omega R=0.0041 \times 19326.824 \times 4=316.96 \mathrm{kWM}$
Trisond momat $=0.0006 \mathrm{LR}=0.0006 \times 19326.834 \times 4=46.384 \mathrm{kWm}$
Shear force at support $=[\omega 10(\pi / 4 / 4)] / 2=[768.99 \times 4 \times(\pi / 4)] / 2=1207.9271 \mathrm{w}$
Shear forre at maximum tention $=1207.927-\left[\right.$ wR $\left.\times\left(\frac{9.55 \times \pi}{180}\right)\right]$

$$
=1207.927-\left[768.99 \times 4 \times\left(\frac{9.55 \times \pi}{180}\right)\right]
$$

$=695.229 \mathrm{kN}$
At suppoit, $M=641.551, \mathrm{wm}=1207.927 \mathrm{kN}$
$M=Q b d^{2}$, Assuming width of giralar is 750 mm

$$
641.55 \times 10^{6}=0.869 \times 750 \times d^{2}
$$

$$
\Rightarrow d=992.144 \mathrm{~mm}
$$

Adopt effecture depth, $d=1000 \mathrm{~mm}$, overall dopth $=1000+50$

$$
\text { Ast }=\frac{m}{\sigma_{s t j d}}=\frac{641.55 \times 10^{6}}{249 \times 0.909 \times 1000}=2834.44 \mathrm{~mm}^{2} \quad=1050 \mathrm{~mm}
$$

Min A ASt $=0.3 \% \cdot b D=\frac{0.3}{100} \times 750 \times 1050=2863 \mathrm{~mm}^{2}$
Provide $6 n 0.5$ of 25 ma dieineter $\left(A_{s}=6 \times \frac{\pi}{4} \times J 5^{2}=2995.2 \mathrm{~m}^{4 n}\right.$)

$$
\left.T_{r}=\frac{V_{4}}{6 d}=\frac{1207.927 \times 10^{3}}{750 \times 1000}=1.61\right) \mathrm{w} / \mathrm{mm}^{2}
$$

$$
\frac{100 A_{\Delta t}}{b d}=\frac{100 \times 2945.24}{750 \times 1000}=0.393
$$

For mzo geade $\frac{\text { loont }}{6 d} \tau_{c}$
$0.95 \quad 0.36$
$0.50 \quad 0.48$

$$
\tau_{c}=0.36+\frac{(0.48-0.36)}{(0.56-0.25)}(0.393-0.25)=0.429 \mathrm{~N}_{1 \mathrm{~mm}^{2}}
$$

rvsre, hence provide shear Reiforcenet,

$$
V_{45}=V_{4}-r_{c b d}=\left(1207.927 \times 10^{3}\right)-(0.429 \times 750 \times 1000)=886177 \mathrm{~N}
$$

Provide 4 leaged 12 m dia stirlups, $A_{s u}=4 \times \frac{\pi}{4} \times 12^{2}=452.384 \mathrm{~mm}^{2}$
Spacing is given from, $V_{u s}=\frac{0187 f_{y} A_{s u d}}{S_{v}}$

$$
886177=\frac{0.87 \times 415 \times 452.389 \times 1000}{5 y}
$$

$$
S_{2}=184 \cdot 3141 \mathrm{MM}
$$

Provide 4 legged 12 mm dia storrups at 180 mmck
At middle, $m=316.96: 1 \mathrm{kwm}, v=695.229 \mathrm{kw}$

$$
A_{s} t=\frac{M}{\sigma_{\text {stjd }}}=\frac{316.96 \times 10^{6}}{249 \times 0.909 \times 1000}=1400.365 \mathrm{~mm}^{2}
$$

Provide 3 no's of 20 mm dicameter ($A_{3} t=3 \times \frac{1 \pi}{4} \times 25^{2}=1472.6 \mathrm{~m}^{2}$)

$$
\begin{aligned}
& \tau_{v}=\frac{v_{u}}{b d}=\frac{695.229 \times 10^{3}}{750 \times 1000}=0.927 \mathrm{~N}_{1 \mathrm{~mm}^{2}} \\
& \frac{100 A_{s} t}{b d}=\frac{100 \times 1472.6}{750 \times 1000}=0.196
\end{aligned}
$$

For mageede $\begin{array}{ll}\frac{100 A_{3} 1}{b d} & z_{c} \\ & \begin{array}{ll}b d \\ 0.15 \\ 0.25 & 0.28 \\ & 0.36\end{array}\end{array}$

$$
\begin{aligned}
& z_{c}=0.28+\frac{(0.36-0.28)}{(0.25-0.15)}(0.196-0.15) \\
& z_{c}=0.317 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$\mathrm{Z}_{r}>\mathrm{Z}_{c}$, hence provide sheas evifforement 0.15

$$
\begin{aligned}
V_{u s}=v_{u}-Z_{C b d} & =\left(695.229 \times 10^{3}\right) \cdot(0.317 \times 750 \times 1000) \\
& =457479 \mathrm{~N}
\end{aligned}
$$

Provide 4 leeged ramn die stiorups ($A_{s v}=\frac{4}{4} \frac{\pi}{4} \times 10^{2}=314.159 \mathrm{~mm}^{2}$) Spacing is guien from $V_{u s}=0.87 f f_{y}$ Asvd

$$
\begin{aligned}
457479 & =\frac{0.87 \times 415 \times 314.159 \times 1000}{S y} \\
S_{Y} & =247.939 \mathrm{~mm}
\end{aligned}
$$

Provide 4 legged 12 mm dianeter stirrups at 240 mm cc

P_{b} Figure shows an arrangement of an ouerkead tank. Design the tank to the cate line dimensions shown in figure The equivalent iniformly distributed loud on the dome may be taken as 6000 N/metre ${ }^{2}$.

Stop 1 - Permissible steerer
$1 \rightarrow$ Permissible stress in direct tension $(\operatorname{tank} w a l l)=1.2 \mathrm{Nam}^{2}$ (Is 3370 -Part II - 1965-Ta661)
\rightarrow Permissible stress in direct tension (domedring beam) $=2.8 \mathrm{~N}_{\mathrm{Nm}} \mathrm{m}^{2}$
\rightarrow Permissible stress in steel $=150 \mathrm{~N}\left(\mathrm{~m} / \mathrm{m}^{3}\right.$
\rightarrow Permissible stoss in died compression $=5 \mathrm{~N} / \mathrm{mn}^{2}$
\rightarrow Permissible stress in bending compression $=7 \mathrm{NMM}^{2}$

$$
\begin{aligned}
& M=\frac{280}{3 \sigma c b c}=\frac{280}{3 \times 7}=13.33 \\
& k=\frac{1}{1+\frac{\sigma_{s}+}{M \sigma c b c}}=\frac{1}{1+\frac{150}{1333 \times 7}}=0.384 \\
& j=1-14 / 3=1-0.36 y / 3=0.872 \\
& Q=0.50 \mathrm{cbc} \mid k=0.5 \times 7 \times 0.384 \times 0.872=1.16
\end{aligned}
$$

Step 2 - Dimensions of tank
Depth of take $=42.5-39.5=3 \mathrm{~m}$
Diameter of tank $=6 \mathrm{~m}$
Central risegof talc $=43.75-42.50=1.25 \mathrm{~m}$

Rackius of done, $R=3^{2}+(R-1.25)^{2}$

$$
\begin{gathered}
R=9+\left(R^{2}+1.563-2.5 R\right) \\
R^{2}-3.5 R+10.563=0 \\
R=4.23 \mathrm{~m} \\
\sin \theta=3 / 4.23=0.709, \cos \theta=\frac{4.23-1.25}{4.23}=0.704, \theta=45.27 \\
\text { Stop 3- Design of top spherical dome }
\end{gathered}
$$

toad on tho come $=6000 \mathrm{~N} / \mathrm{m}^{2}$, Let thideresr $=150 \mathrm{~mm}$
Meridiond stores

$$
\begin{aligned}
& \text { Meridenid thrust, } T_{1}=\frac{\text { WT }}{1+\cos 0}=\frac{6000 \times 4.23}{1+0.704}=14894.366 \mathrm{~N} / \mathrm{m} \\
& \text { Meridiond stress }=\frac{T_{1}}{t}=\frac{14.894}{150}=0.099 \mathrm{~N} / \mathrm{mm}^{2}<5 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Hoop stress

$$
\begin{aligned}
\text { Circumpreatial force, } \begin{aligned}
T_{2} & =\omega R\left[\begin{array}{cc}
\cos \theta & \left.-\frac{1}{1+\cos \theta}\right]
\end{array}\right] \\
& =6000 \times 4.23\left[\begin{array}{c}
0.704-\frac{1}{1+0.70 y}
\end{array}\right] \\
& =2973.154 \mathrm{~N} / \mathrm{m} \\
& =2.973 \mathrm{kN} / \mathrm{m}=2.973 \mathrm{~N} / \mathrm{mm} \\
\text { Stop stress }=\frac{T_{2}}{t}=\frac{2.973}{150} & =0.02 \mathrm{Nam}^{2}<5 \mathrm{~N} / \mathrm{nm}^{2}
\end{aligned}
\end{aligned}
$$

Meiforemat

$$
M_{\text {in }} A_{s t}=0.31 . b D=\frac{0.3}{100} \times 1000 \times 150=450 \mathrm{~mm}^{2}
$$

Provile Emm damater bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 8^{2}}{450}$

$$
\text { Provile } 8 \mathrm{~mm} \text { diamater bars at }=111.701 \mathrm{~mm}
$$ cirmmperatially and reridionally.

Stop 4-Design of top ring beam
Reinforeement
\rightarrow Houp lension, $F_{t}=T_{1} \times \cos 6 \times D_{t} / 2=14.894 \times 0.704 \times 6 / 2$

$$
\begin{aligned}
A_{s t}=\frac{F_{t}}{\sigma_{s t}}=\frac{31.456 \times 10^{3}}{150}=209.707 \mathrm{~mm}^{2}
\end{aligned}
$$

Pravide uno's of comm diamater ($4 \times \frac{\pi}{4} \times 0^{2}=314.159 \mathrm{~mm}^{2}$)
\rightarrow Minimom shear reinforemat is given by,

$$
\frac{A_{s v}}{b_{s y}}=\frac{0.4}{0.87 f_{y}}
$$

Provide 2 legged 6 mm dianeter stirrups,

$$
\begin{gathered}
\text { Asu }= \\
2 \times \frac{\pi}{4} \times 6^{2}=56.549 \mathrm{~mm}^{2} \\
56.549=\frac{0.4}{1004 \times 5 y}=0.87 \times 1.15 \\
S_{y}=
\end{gathered}
$$

Sine
Parmissible stress in ring beam $=\frac{F_{t}}{\text { ActmAst }}$

$$
\begin{aligned}
& 2.8=\frac{31.456 \times 10^{3}}{A_{1}+(13.33 \times 314.159)} \\
& A_{C}=7046.546 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 1.2=\frac{31.456 \times 10^{3}}{A_{0}+(13.33 \times 314.159)} \\
& A_{c}=22025.594 \mathrm{~mm}^{2}
\end{aligned}
$$

Paine top ring beam of size $150 \times 150 \mathrm{~mm}\left(A_{1}=22,500 \mathrm{~mm}^{2}\right)$ Shear erifforemest
minimum shear reinforcement in given by

$$
\frac{A_{s v}}{b s v}=\frac{0.4}{0.87 f_{y}}
$$

where $A_{\text {BU }}=2 \times \frac{\pi}{4} \times 6^{2}=S 61549 \mathrm{~mm}^{2}$,

$$
\begin{aligned}
\frac{56.549}{150 \times 5 v} & =\frac{0.4}{0.87 \times 415} \\
S V & =340.284 \mathrm{~mm}
\end{aligned}
$$

\therefore Provide 6 ma diameter 2 legged stirrups at $300 \mathrm{mac} / \mathrm{c}$
Step 5-Design of tank wall
Porizantal reinforcemat
Hoop tension, $f_{t}=D_{w} \times H \times \frac{D_{t}}{2}=9.81 \times 3 \times \frac{6}{2}=88.29 \mathrm{kw} / \mathrm{m}$

$$
A_{s t}=\frac{F_{t}}{\sigma_{s t}}=\frac{88.29 \times 10^{3}}{150}=588.6 \mathrm{~mm}^{2}
$$

Ast on one face $=\frac{588 \cdot 6}{2}=294 \cdot 3 \mathrm{~m}^{2}$
Provide 8 mm diameter bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 8^{2}}{294.3}$

$$
=170.97 \mathrm{~mm}
$$

Provide 8 mm diameter burs at 1 rome ch on both faces

$$
\left(A_{\text {st proukled }}=\frac{1000 \times \pi \frac{1}{4} \times 8^{2}}{120}=295.679 \mathrm{~m}^{2} \text { on bath face }\right)
$$

Ass on both faces $=2 \times 295.679=591.358 \mathrm{~cm}^{2}$)

Sine

$$
\begin{aligned}
& \text { Permissible stress in tank well }=\frac{F_{t}}{A_{t}+m A_{s} t} \\
& 1.2=\frac{88.29 \times 10^{3}}{A_{c}+(13.33 \times 591.358)} \\
& A_{C}=65.692 .198 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide tank wall of thickness $150 \mathrm{~mm}\left(A_{c}=1000 \times 150\right.$
vertical reinforcement

$$
=150000 \mathrm{~mm}^{2}
$$

$$
A_{s t}=0.31, b D=\frac{0.3}{100} \times 1000 \times 150=450 \mathrm{~mm}^{2}
$$

Ast on each face $=\frac{450}{2}=225 \mathrm{~mm}^{2}$
Provide 8 mm . diameter bass, sparing $=\frac{1000 x \frac{\pi}{4} \times 8^{2}}{225}$
Provide 8 mm decameter bars at 220 mn dc on both faces. Step 6 - Design of bottom ring beam
Peimpriemet
\rightarrow Load due te spherical done $=T \sin \theta=14.894 \times 0.709$

$$
=10.56 \mathrm{kN} / \mathrm{m}
$$

Load due te top ring beam $=0.15 \times 0.15 \times 25=0.563 \mathrm{kw} / \mathrm{m}$ Load due to tank wall $=0^{+} .15 \times 3^{1+} \times 25=11.25 / \mathrm{w} / \mathrm{m}$ Assuming size of bottom ring beam as $0.15 \times 0.15 \mathrm{~m}$, lead due te button ring hem $=0.15 \times 0.15 \times 25=0.5631 \mathrm{w} / \mathrm{m}$

$$
\therefore \text { Total neiticel loud }=10.56+0.563+11.25+0.563
$$

Total hoizantel $l=22.936 \mathrm{kolm}$
\rightarrow Hop basion due to nested load $=22.936 \times \frac{D}{2}$

$$
\begin{aligned}
& =22.936 \times \frac{6}{2} \\
& =68.808 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
&=68.808 \mathrm{kN} \\
& \rightarrow \text { Hoop tension due te water }=21 \mathrm{w} \times 14 \times h \times \frac{2 t}{2} \\
&=9.81 \times 3 \times 0.15 \times \frac{6}{2} \\
&=13.244 \mathrm{~kW} \\
& \rightarrow \text { Tatel hap tesion }=68.808+13.244=82.052 \mathrm{kw}
\end{aligned}
$$

$$
\rightarrow A_{s t}=\frac{F_{t}}{\sigma_{s t}}=\frac{82.052 \times 10^{3}}{150}=547.013 \mathrm{~mm}^{2}
$$

Provide 4 no's of 16 mm diam eter bars (ASt $\left.=4 \times \frac{\pi}{4} \times 16^{2}=804-2 \mathrm{~m}_{\mathrm{h}}{ }^{2}\right)$
\rightarrow Miniorom shear reinforeaneat is giver by

$$
\frac{A_{54}}{b 5 y}=\frac{0.4}{0.87 f_{y}}
$$

Prouide 2 legged 6 ma dienater stirrups,

$$
\begin{aligned}
A_{v V}=2 \times \frac{\pi}{4} \times 6^{2} & =56.548 \mathrm{~mm}^{2} \\
\therefore \frac{56.549}{150 \times S_{y}} & =0.4 \\
S_{V} & =340.2874 \mathrm{~mm}
\end{aligned}
$$

Proude I legged 6 mn chameter starreps at 300 mnch Step 7-Design of conical dome.
\Rightarrow Pimessions
Length of
(Dicameter)
Anerage diameto of $=3 \mathrm{~m}$ calicel $=\frac{6+3}{\text { dome }\left(P_{C}\right)^{2}}=1$.
Avarage depth of water, $\mid H=3+2 / 2=4 \mathrm{~m}$
\rightarrow Lal colulation

Weight of weter above covical dome $=(\pi D \times H C \times 2) \times 9.81$

$$
\begin{aligned}
& =\pi \times 4.5 \times 4 \times 2 \times 9.81 \\
& =11094851 \mathrm{aW}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total horiontel lead (fem conporats able) } & =22.936 \times \pi D t \\
& =22.936 \times \pi \times 6 \\
& =432.333 \mathrm{kN}
\end{aligned}
$$

Assuming thichess of conical deme as 150 mm , self wight

$$
\begin{aligned}
\text { of dome } & =\pi D_{C} \times 0.15 \times \sqrt{2^{2}+1.5^{2}} \times 25 \\
& =\pi \times 4.5 \times 0.15 \times \sqrt{2^{2}+1.5^{2} \times 25} \\
& =132.536 \mathrm{kN}
\end{aligned}
$$

$$
\therefore \text { Total lad }=1109.485+432.333+132.536
$$

$$
\begin{align*}
& =1674.354 \mathrm{kw}
\end{aligned} \begin{aligned}
\text { Load } / \mathrm{m} \text { length }=1674.3544 /\left(\pi \times 0_{b}\right) & =1674.354 /(\pi \times 3) \tag{1}\\
\rightarrow \text { merideind stress } & =177.654 \mathrm{~kW} / \mathrm{m}
\end{align*}
$$

$$
\begin{aligned}
& \text { Meridional thrust, } T_{1}=177.655 \times \operatorname{cosec} 45=251.241 \mathrm{kN} \\
& \text { meridiond stress } F \frac{T_{1}}{t}=\frac{251.241}{150}=1.675 \angle 5 \mathrm{~N}^{1} \mathrm{~mm}^{2}
\end{aligned}
$$

\rightarrow Horizontal reinforcenest
Hoop tension, $F_{t}=(p \operatorname{cosec} \theta+q \cot \theta) \times \frac{D 1}{2}$

Provide 18 minn diender bars, spacing $=\frac{1000 \mathrm{k} \frac{\mathrm{F}}{4} \times 12^{2}}{453.703}$

$$
=249.276 \mathrm{~mm}
$$

$$
\begin{aligned}
& \text { where } P=\text { water pressure }=9.81 \times D b=9.81 \times 3=29.43 \mathrm{kw} / \mathrm{m}^{2} \\
& q=\text { Self weight of cortical dome }=0.15 \times 25=3.75 \mathrm{~kW} / \mathrm{m}^{2} \\
& \therefore F_{t}=[(29.43 \times \operatorname{cosec} 45)+(3.75 \times \cot 45)] \times \frac{6}{2} \\
& =136.111 \mathrm{kN} \\
& A_{S t}=\frac{F_{t}}{\sigma_{S t}}=\frac{136 \cdot 111 \times 10^{3}}{150}=907.407 \mathrm{~mm}^{2} \\
& \text { Alt on one fut } 150=907.607 / 2=453.703 \mathrm{ma}^{2}
\end{aligned}
$$

Provide 12 mm diameter bars at 240 muck on bulk

$$
\begin{aligned}
& \text { Provide } 12 \mathrm{~mm} \text { chameler }\left(A+p=\frac{1000 x}{\frac{\pi}{4}} \times 12^{2} \times 2=942.478 \mathrm{~mm}^{2}\right) \\
& \text { fro }
\end{aligned}
$$

\rightarrow Vertical reinforenet

$$
A_{s t}=0.31 .6 D=\frac{0.3 \times 1000 \times 150=480 \mathrm{~mm}^{2}}{100}
$$

Ass on each face $=450 / 2=2257 \mathrm{~m}^{2}$
Provide 8 mm diameter bars, $s p a c i n g=\frac{1000 \times \frac{\pi}{4} \times 8^{2}}{225}$

$$
=223.402 \mathrm{~mm}
$$

Provide 8 mm cheinetes bars at $22 a \mathrm{amck}$ on both faces.
\rightarrow Stress check

$$
\begin{aligned}
\text { Permissible stress in conical dome } & =\frac{\mathrm{F}_{t}}{A_{c}+m \text { Astr }} \\
& =\frac{136.111 \times 10^{3}}{(1000 \times 150)+(13.333 \times 941.48)} \\
& =0.837 \mathrm{Nmm}^{2}<2.8 \mathrm{NMan}^{2}
\end{aligned}
$$

Stepp-Design of Circular bare slab
The slab will be clesigned as supported all around the edge over the circular ring girder. Maximum bering moment at centre of circular base sled is given by, $M=\frac{3}{16} \omega r^{2}$ per metre width of shes. Where $w \rightarrow$ weight on sled
$r \rightarrow$ Radius at bottom $=3 / 2=1.5 \mathrm{~m}$
\rightarrow Weight of water over sled $=9.81 \times(3+2)=49.05 \mathrm{kN} / \mathrm{m}^{2}$
\rightarrow Self weight of alas (assuming room thine) $=0.2 \times 25=51 \mathrm{cha} a^{2}$ Total load, $w=54.05 \mathrm{kw} / \mathrm{m}^{2}$

$$
\begin{aligned}
& M=\frac{3}{16} \times 54.05 \times 1.5^{2} \\
&=22.802 \mathrm{kNm} \\
& \Rightarrow M=Q 6 d^{2} \\
& \Rightarrow 1.16 \times 1000 \times d^{2}=22.802 \times 10^{6} \\
& d=140.203 \mathrm{~mm}
\end{aligned}
$$

Hance provide effective depth, $d=170 \mathrm{~mm}$, cover $=30 \mathrm{~mm}$, overall thicluess $=170+40=200 \mathrm{~mm}$

$$
\begin{aligned}
\rightarrow A_{S 1} & =\frac{M}{\sigma_{s t}+j d} \\
& =\frac{22.802 \times 10^{6}}{150 \times 0.872 \times 170} \\
A_{\text {st }} & =1025.454 \mathrm{~mm}^{2}
\end{aligned}
$$

\therefore Provide 10 mm da bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{1025.454}$
Provide 16 mm chametes bars at $190 \mathrm{~mm}=196.071 \mathrm{~mm}$

Step 9-Design of circular or ring giedes
From (1), letel lead of water, load $\}=1674.354 \mathrm{kw}$
conical lame

$$
\text { Self ut of cricular sles } \begin{aligned}
=\frac{\pi d^{2}}{4} \times+\times 25 & =\frac{\pi \times 3^{2}}{4} \times 0.2 \times 25 \\
& =35.343 \mathrm{kw}
\end{aligned}
$$

Assurning sine of ring girder as $300 \times 500 \mathrm{ma},=(0.3 \times 0.5 \times 25) \times(\pi \times 3)$

$$
\text { self weight of grader }(d=450 \mathrm{~mm})
$$

$$
=35.343 \mathrm{~kW}
$$

Total design load on gridee, $w=1674 \cdot 354+35 \cdot 343+35 \cdot 343$

$$
=1745^{\circ} 04 \mathrm{k}
$$

Totel design laad panm, $=\frac{1745^{\circ} .04}{\pi \times 3}=185^{\circ} 154 \mathrm{kNNm}$
$\rightarrow 13 M \& S F$
Let us provile 6 columas,
Negalue $B H=0.0148 W R=0.0148 \times 1745.04 \times 1.5=38.74 \mathrm{~km}$
Positure $B M=0.0075 \mathrm{WR}=010075 \times 1745.04 \times 1.5=19.632 \mathrm{kwg}$
Torsiond momat $=0.0015 \mathrm{WR}=0.0015 \times 1745.04 \times 1.5=3.926 \mathrm{~km}$
Shear force it support $=\frac{\text { wr } \times 1 / 1 / 4)}{2}=\frac{185.15(\times 1.5 \times(\pi / 4)}{2}$

$$
\begin{aligned}
& =109.065 / \mathrm{w} \\
& \text { Sheas fore at maximon lessiun }=109.065\left(-\left(\omega \times 12 \times 1244^{\prime} \times \frac{\pi}{180}\right)\right. \\
& =109.065-\left(185.154 \times 1.5 \times 12.733 \times \frac{\pi}{180}\right. \\
& =47.344 \mathrm{kN}
\end{aligned}
$$

At support, $M=38.74 \mathrm{kwM}, V=109.065 \mathrm{kw}$

$$
\begin{gathered}
M=Q 6 d^{2} \\
38.74 \times 10^{6}=1.16 \times 300 \times d^{2} \\
\Rightarrow d=333.649 \mathrm{~mm}<450 \mathrm{~mm} \\
A_{\text {st }}=\frac{M}{\sigma_{\text {stj }} d}=\frac{38.74 \times 10^{6}}{150 \times 0.872 \times 450}=658.172 \mathrm{~mm}^{2}
\end{gathered}
$$

$$
M_{\text {in }} A_{\text {st }}=0.3 \% D=\frac{0.3 \times 300 \times 500=45 \mathrm{cmn}^{2}, ~}{100} \text {, }
$$

Provide $6 * 12 \mathrm{mn}$ diamelen baas ($\left.\Lambda_{5 L}=6 \times \frac{\pi}{4} \times 1^{2}=678.586 \mathrm{~mm}^{2}\right) d$
$\tau_{r}>z_{c} \Rightarrow$ Provide shear reifforement.

$$
\begin{aligned}
v_{u s}=v_{u}-r_{0 d} d=\left(109.065 \times 10^{3}\right)-(0.3 \times 3000 \times 450) & =68565 \mathrm{~N} \\
& =68.565 \mathrm{kN}
\end{aligned}
$$

Provide 2 legged 6 mm dia stirrups, Asv $=2 \times \frac{\pi}{4} \times 8^{2}=100 \mathrm{~s}^{3 \mathrm{~mm}^{2}}$ Spacing is given by $V_{u s}=\frac{0.87 f_{y} A_{\text {sur }}}{S_{V}}$

$$
\begin{aligned}
.68 .56 \times 10^{3} & =\frac{0.87 \times 415 \times 100.53 \times 450}{5 x} \\
5 x & =238.93 \mathrm{~mm}
\end{aligned}
$$

Provide \& legged $\mathrm{8m}$ diemeter storrups at 230 cm ck
At middle, $M=19.632 \mathrm{kWm}, V=47.314 \mathrm{kw}$

$$
\begin{aligned}
& A_{s t}=\frac{M}{\sigma_{s t g} d}=\frac{19.632 \times 10^{6}}{150 \times 0.872 \times 450}=333.54 \mathrm{~mm}^{2} \\
& \text { Min Ast }=0.31 . \Delta D=\frac{0.3 \times 300 \times 500=450 \mathrm{~mm}^{2}}{100}
\end{aligned}
$$

Provide 4no's of 12 mm chacinelee burs at b_{0} ttom (Ast $=452.3 \mathrm{~mm}^{2}$) Provide 2 legyed 6 mm dia stirarups at 230 mmck .

$$
\begin{aligned}
& Z_{r}=\frac{V_{u}}{b_{0}}=\frac{109.065 \times 10^{3}}{300 \times 450}=0.808 \mathrm{Nmm}^{2} \\
& \frac{100 A_{s} t}{b d}=\frac{100 \times 678.584}{300 \times 450}=0.5 \Rightarrow \tau_{C}=0.3 \mathrm{Nman}^{2}(25475, f \text { f } 84)
\end{aligned}
$$

Step 10 - Design of Columns
The supporting tower comprises of 6 colum equally spaced on a aricle of 3 M diameter
spacing of bracing $=3.75 \mathrm{~mm}(7.5 / 2)$
Base of tank is 7.75 m owe ground laurel.
hoad on columns (weight)
\rightarrow Vertical load on each column due to weight $=$ Total design

$$
=\frac{1745.04}{6}
$$

$$
=290.84 \mathrm{~kJ}
$$

$\begin{aligned} \rightarrow \text { Self weight of colum of height } 7.5 \mathrm{~m} & \text { and diameter } 300 \mathrm{~mm}\end{aligned}$

$$
\begin{aligned}
& \text { weight }=990.84+13.25+3.54=307.631 \mathrm{kw} \\
& \text { wind fore on column }
\end{aligned}
$$

wind fore on coliums
Intensity of wind pressure $=1.5 \mathrm{k} \mathrm{cm}^{3}$ (assume)
Reduction coefficient for circular shaper $=0.7$
\rightarrow wind force on top dome and cylindrical

$$
\begin{aligned}
\text { which } & =\left(3+\frac{1.25}{3}\right) \times 6 \times 07 \times 1.5 \\
& =\$ 2.84 \mathrm{kN}
\end{aligned}
$$

\rightarrow wind force on bottom ring beam $=0.15 \times 3 \times 0.7 \times 1.5=0.47 \mathrm{kN}$

$$
\begin{aligned}
& =\frac{1}{4} \times 0.3^{2} \times 7.5 \times 25=13.251 \mathrm{a} \\
& \begin{aligned}
&\rightarrow \text { Self weight of bracing (3oumm } \times 3 \mathrm{amm})=1 \times(0.3 \times 0.3) \times(\pi \times 3) \\
& \times 25
\end{aligned} \\
& \begin{aligned}
& \text { Bracing wight on one cerumen }=\frac{21.21}{6}=21.21 \mathrm{~kW} \\
& \text { til vertical lead on each }
\end{aligned} \\
& \text { Total vertical lead on each column due to :1 }
\end{aligned}
$$

\rightarrow Wink force on conical dome $=(3+1.5) \times 2 \times 0.7 \times 1.5=9.45 \mathrm{k}$
\rightarrow wind force on the expose columns $=3 \times 0.3 \times 7.5 \times 0.7 \times 1.5$

$$
=7.091 \mathrm{~N}
$$

\rightarrow wind force on bracing $=1 \times 0.5 \times 3 \times 1.5=2.251 \mathrm{w}$
Total wind force $=22.84+0.47+9.45+7.09+2.25$

$$
=42.1 \mathrm{kN}
$$

Assuming point of cantraflexure at mid height of column, fixed at base due te reft foundation, monet at bare of column is calculated as,
Fixing mamet, $M_{f}=$ Total wind fore $\times \frac{\text { Colum height }}{2}$

$$
\begin{aligned}
& =42.1 \times \frac{7.5}{2} \\
& =157.88 \mathrm{kNm}
\end{aligned}
$$

If M_{12} is the moment of resistance at base of colum due to wind loads,

$$
\begin{aligned}
& M_{R 2}= 22.84 \times\left(9.5+\frac{3+1.25}{2}\right)+9.45 \times\left(7.5+\frac{2}{2}\right)+(0.47 \times 7.5) \\
&+(2.25 \times 3.75) \\
&= 357.8 \mathrm{kvm} \\
& M_{R}= M_{F}+\frac{v}{r} \sum a^{2} \\
& \text { where } M_{F} \rightarrow \text { Fixing manet } \\
& M_{R} \rightarrow \text { Moment of resistance }
\end{aligned}
$$

$y \rightarrow$ Reaction
$a \rightarrow$ Distance of colum flem cate $\sin 45=\frac{a}{145}$ $357.8=157.88+\frac{v}{1.5}\left[\left(4 \times 1.06^{2}\right)+\left(2 \times 1.5^{2}\right)\right]$ $a=1.06 \mathrm{~m}$ $3578=157.88+6 y$

Reaction, $v=33.32 \mathrm{kN}$

Total lead on colums = verticel loal due to woigh Reactan due to deal bad

$$
\begin{aligned}
& =307.63+33.32 \\
P & =340.95 \mathrm{kw} \\
\text { Momat in Cach column } & =\frac{\text { Fxing monat }}{\text { No.folumv }}=\frac{157.88}{6} \\
M & =26.31 \mathrm{kwM}
\end{aligned}
$$

Reinforcemat in Celumn
Ecceatricily $R=\frac{M}{P}=\frac{26.31 \times 10^{6}}{340.95 \times 10^{3}}=77.17 \mathrm{~mm}$
Is 456, Pg $42,25.4$, minimun eccatricity is 20 mm Use 8 bars of 32 mn diemeler and latead thes of comm deameter at 300 mach

$$
A_{s c}=8 \times \frac{\pi}{4} \times 32^{2}=6433.98 \mathrm{~mm}^{2}
$$

Effectine area, $A_{c}=A_{c c}+m A_{s t}=\left(\frac{\pi D^{2}}{4}\right)+m A_{s c}$

$$
\begin{aligned}
& =\left(\frac{\pi \times 300}{4}\right)+(13.33 \times 6.33 .98) \\
A_{e} & =156450.788 \mathrm{~m}^{2}
\end{aligned}
$$

Faviualat moment of intertia, $I_{e}=\frac{\pi D^{4}}{64}+\frac{(m-1) A_{s c} d^{2}}{8}$

$$
d=D-6 \text { cors }=300-30=260 \mathrm{mn}
$$

$$
I_{e}=\left(\frac{\pi \times 30^{4}}{64}\right)+\frac{(13.333-1) \times 6433.98 \times 260^{2}}{8}=1.068 \times 10^{9} \mathrm{~mm}^{4}
$$

For sefoly of colum, $\frac{\sigma_{c}{ }^{\prime}}{\sigma_{c c}}+\frac{\sigma_{b c}{ }^{\prime}}{\sigma_{b c}}<1$ (Permisisle stress in Meterials may be incereased by $331 / 3!(1.333)$ Where $\sigma_{C}^{\prime}{ }^{\prime}=\frac{P}{A_{2}}=\frac{340.95 \times 10^{3}}{156450.788}=2.179 \mathrm{Nkm}^{2}$

Step 11 - Design of braces

$$
\begin{aligned}
& \text { monet in brace }=2 \times \text { monent in celurm } \\
& =2 \times 26.63=53.26 \mathrm{kam} \\
& A_{s t}=\frac{M}{\sigma_{\$ t-d}}=\frac{53.26 \times 16^{6}}{1516 \times 0.872 \times 250}=1628.75 \mathrm{sm}^{2}
\end{aligned}
$$

Provide $6 \times 20 \mathrm{~mm}$ diameter at top and buttom $\left(6 \times \frac{\pi}{4} \times 20^{2}=1884.96 \mathrm{~m}^{2}\right)$ and comm 2 legeed stirrups at zoomm de as stirips.
Step 12 - Design of foundatiens
A crucular giredes with reft slas is provided.
Total loud on furndations = Totel nertual laad \times No of cotums due te colums on colerims

$$
=307.63 \times 6=1845.78 \mathrm{kN}
$$

Self weight of fourdition $=10 \%$ of tôtel load (columss)

$$
(\text { arsume })=\frac{10 \times 1845.78=184.578 \mathrm{~kW},}{100}
$$

Total lad on foundithons $=1845.78+184.578=2030.358 \mathrm{~kW}$ Sefe bearing cepaidy of Soil $=250 \mathrm{kw} / \mathrm{m}^{2}$

$$
\text { Alce of foundatian }=\frac{\text { Total land }}{\text { SBC }}=\frac{2030.358}{250}=8.11 \mathrm{~m}^{2}
$$

Design of raft sles
Providing a reft sles with equal projections on eithea eft of ciralar ning bean, if ' S ' is the width of reft Nobs

$$
\begin{aligned}
& \text { Area }=\pi d \times b \\
& \Rightarrow(\pi \times 3) \times b=8.121 \\
& b=0.862 \mathrm{~m}
\end{aligned}
$$

Ines chander $=3-0.862=2.138 \mathrm{~m}$
outer duander $=3+0.862=3.862 \mathrm{~m}$
Arce of anculas poritan $=\frac{\pi}{4}\left(3.862^{2}-2.138^{2}\right)=8.124 \mathrm{~m}^{2}$
Momat of inetia $=\frac{\pi}{64}\left(3.862^{4}-2.138^{4}\right)=9.894 \mathrm{~mm}^{4}$
Foundation will be desigged for averge, $p=\tau_{0}$ td louden foundater presure of due to column Area of anulas reft

$$
\begin{aligned}
& =\frac{1845.78}{8.124} \\
& =227.201 \mathrm{~kW} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ouerkey, } x=\frac{1}{2}\left[\frac{1}{2}(3.862-2.138)-0.3\right]=227.201 \mathrm{kw} 1 \mathrm{~h} \\
& \text { Berdina }
\end{aligned}
$$

Bending moment, $M=P \times x \times \frac{x}{2}=227.201 \times 0.281 \times \frac{01281}{2}$

$$
\begin{aligned}
M=Q b d^{2} \Rightarrow 8.97 \times 10^{6} & =1.16 \times 1000+d 2 \\
d & =87.936 \mathrm{am}
\end{aligned}
$$

Provide effecture depth, $d=90 \mathrm{~mm}$, cover $=30 \mathrm{~mm}$, cherell doph $=12 \mathrm{~mm}$

$$
A_{S S}=\frac{M}{\text { ostjd }}=\frac{897 \times 16}{150 \times 0.872 \times 90}=761.978 \mathrm{~mm}^{2}
$$

Provide 12 mm die baers, Spaciry $=\frac{1000 \times(\pi / 4) \times 12^{2}}{761.978}=148.42 \mathrm{kmm}$

Pounce 12 mm diameter bars at 150 mm ck as main bors

$$
\operatorname{Min} A_{S I}=031 . B_{D}=\frac{0.3}{100} \times 1000 \times 120=360 \mathrm{~mm}^{2}
$$

Provide 10 mm diameter bars, spacing $=\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{360}=218.166 \mathrm{~mm}$
Provide 10 mm dianates bars at 20 mmck as distributor bars.
Design of circular girder
Total design lead on girder, $\omega=1845.78$ (Gad on columns)
Total design load perm $=\omega=\frac{1845.78}{\pi \times 3(\mathrm{DHb})}=195.843 \mathrm{kw} / \mathrm{m}$
As the design load of cucular ring guider in foundation is more or less equal to the loads in arralas girder at tank provide similar depth and reinforcenats.

Writ IW - Industrial Structures
Structural steel framing -Steel Roof Trusses - Resfing clench Been Column - Cabal provisions - Design and Drawing

Roof Truss
Large colum free areas are required for auditeriunss, assembly halls, workshops etc. To get column free area, roofing system is provided which has roof truss connected with purling which intuon supports seoof sheeting mode of aI sheds, Aluminium sets or Abbestos cones (AC) sheets. The reef truss are supported on walls or columns on both sides.
Elements of a roof truss

Top chord members - uppermost members along uppermost line
Principal Refer of truss passing through peak and support They support purine which supports shad.
Bottom chord members - Lowermost mentors extending foo one
(or) lies support to anther.
Principal Ties support to anther.
stouts - Members subjected to compression forces other then top and bottonchord mentors
strings or Tie - Members subjeded to tension forces other then top and bottom chord members

S So Tie - Provided to reduce By of peak Goad on roof thews

1) Deed loud

Uni weight of sheet $(15875 . \operatorname{Cad} I) \rightarrow 9$ heat $-85 \mathrm{Nm}^{2}$

$$
\rightarrow \text { Acshect }-136 \mathrm{~N}_{1 \mathrm{~m}^{2}}
$$

weight of purlin - 100 to 120 Nm
weight of truss - $\left(\frac{8 p x}{3}+5\right) \times 10$ (or) no\% of lad on trues.
weight of bracing - 12 to $15 \mathrm{~N}^{2}$ of poon area.
9) Live load

$$
\begin{aligned}
\text { I5sor Pad II - Ref slope } \leq 10^{\circ}-\text { Acessprovided } & =1.5 \mathrm{kN} / \mathrm{m}^{2} \\
- \text { No access } & =0.75 / \mathrm{w}^{2} \mathrm{~m}^{2} \\
>10^{\circ}- & {[0.75-0.02(0-10)] }
\end{aligned}
$$

\rightarrow Wind fore, $F=\left(C_{p e}-c_{p i}\right) A A_{d}$
$c_{p e}, c_{p i} \rightarrow$ Extend + interne pressure coefficient
$A \rightarrow$ Surface area
$P_{d} \rightarrow$ Design wind pressure $\left(P_{2}\right)$
\rightarrow Design wind pressure, $P_{2}=0.6 \mathrm{~V}_{2}{ }^{2}$
where $V_{2} \mp$ Design wind speed $=V_{b} k_{1} k_{2} k_{3}$
$k_{b} \rightarrow$ Basic wind speed
$k_{1} \rightarrow$ Risk coofficiat (Depending on importance of $\left(u_{y}\right)$
$I_{2} \rightarrow$ Terran, height and steuture, size footer
$k_{3} \rightarrow$ Topography factor
4) Snow load

Snow lad $=2.5 \mathrm{~N} / \mathrm{m}^{2}$ per mm depth of snow when roof shape 550°, snow loud is neglected
5) hoad Combinategn
\rightarrow Deal led + Live loud
\rightarrow Deed load + Snow load
\rightarrow Dead loud + Wind load
Pb) Determine the loads acting on the roof of a Fink truss for the following data.
\rightarrow overall length of building - 48 m
\rightarrow Overall with of building -16.5 m
\rightarrow width (c ko of roof tres) -16 m
\rightarrow ck spacing of truss - 8M
\rightarrow Rise of truss - 1/4 of span
\rightarrow Self weight of purling - $318 \mathrm{~N} / \mathrm{m}$
\rightarrow Height of column $=1 \mathrm{~m}$
\rightarrow Roofing and sire coverings - Ac sheet ($17\left(\mathrm{~N} / \mathrm{Mm}^{2}\right.$)
The building is located in industrial area Naini,
Allamabed. Both the ends of truss are hinged. Use steel of grade Feylo
Solution
Sleep 1 - Truss heametry

$$
\begin{aligned}
\text { Rise of truss } & =\frac{1}{4} \text { of span } \\
& =\frac{1}{4} \times 16 \\
& =4 \mathrm{~m}
\end{aligned}
$$

Slope, $\tan \theta=\frac{4}{8}=0.5$

$$
\begin{aligned}
& \Rightarrow \quad a=\tan ^{-1}(0.5)=26.565^{\circ} \\
& \text { Length of panel }=\sqrt{8^{2}+4^{2}}=8.944 \mathrm{~m}
\end{aligned}
$$

Sugth of each panel on ore side $=8.944 / 4=2.236 \mathrm{~m}$
length of each panel in plan $=2.236 \times \cos 26.565=2 \mathrm{~m}$

Step -Dead Loud
Self weight of $A C$ sheet $=171 \mathrm{~N}^{2}$
Self weight of purlin $=318 \mathrm{~N} / \mathrm{m}$
Self weight of trues $=\left(\frac{5 p a n}{3}+5\right) \times 10=\left(\frac{16}{3}+5\right) \times 10$.

$$
=103.33 \mathrm{~N} / \mathrm{m}^{2}=110 \mathrm{~N} / \mathrm{m}^{2}
$$

Self weight of bracing $=12 \mathrm{Nmm}^{2}$ (Assume)
Total dead oud $=171+110+12=293 \mathrm{~N}^{2} \mathrm{~m}^{2}$
Total ${ }^{\left.\left(\mathrm{N}_{\mathrm{m}}\right)^{2}\right)}$
$\begin{aligned} & \text { Total deed load }=318 \mathrm{Nm} \\ &(\mathrm{Nm})\end{aligned}$
Load at intermediate panels $=(293 \times 8 \times 2)+(318 \times 8)$

$$
=7232 \mathrm{~N}
$$

hoad at penal points $=7233 / 2=3616 \mathrm{~N}$

Slep 3 - Live foud.
Live loud for $\theta>10^{\circ}$, Line had $=0.75-0.02 \cdot\left(\theta-10^{\circ}\right)$

$$
=0.75-0.02(26.565-18)
$$

Loud at intermetate pands $=0.419 \times 8 \times 2$

$$
=0.419 \mathrm{kv} / \mathrm{m}^{2}
$$

Load at an panel points $\begin{aligned} & =6.704 \mathrm{kN} \\ & =604 / 2=3.3521 \mathrm{w}\end{aligned}$

Stop 3-Wird Lond

$$
k_{2}
$$

Calegory 3- Numerously closed'spued obsitanctions with builling height upto iom (I5875-Pat III-Pg8)
Class B - Greetest dimension - yom (between do to 50 m) From Table 2, Haght k_{2}

$$
\text { (11) }{ }_{10}^{10} \quad 0.88
$$

$$
\begin{aligned}
& \rightarrow V_{2}=V_{5} k_{4} k_{2} k_{3} \text { (IS } 875 \text {-Pat III-Py8) } \\
& V_{b}=4 \text { mils } \text { (Allahabad) }-\left(\text { I5875 - Put III }-\mathrm{Pg}_{\mathrm{g}} 53\right. \text {, Pg a Figi) } \\
& k_{1}=1.0 \text { (gonend builing) - I5875 Part In, Pg } 11, \text { Talle } 1 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& l_{2}=0.88+\left(\frac{0.94-0.88}{15-10}\right) \times(11-10) \\
& l_{2}=0.892
\end{aligned}
$$

$k_{3}=1$ (flat topogeephy)

$$
\therefore V_{2}=47 \times 1 \times 0.892 \times 1=4.83 \mathrm{~m} / \mathrm{s}
$$

Design wind pressure, $P_{2}=0.6 \mathrm{~V}_{2}^{2}$

$$
\begin{aligned}
& =0.6 \times 41.83^{2} \\
& =1049.849 \mathrm{~N}_{\mathrm{m}^{2}}=1.05 \mathrm{kN}^{2}
\end{aligned}
$$

I5 875, Py 13, wind loud $\neq F=\left(C_{p e}-C_{p i}\right) A P d$
Cfe (Thle 5 -Pg16)

$$
\frac{h}{w}=\frac{11}{16}=0.688, \frac{1}{2}<\frac{b}{w}<\frac{3}{2}
$$

Rorf		Wind Angle 0°		Wind ougle 90°	
Cngle	FF	GH	FG	$F H$	
20	-0.7	-0.5	-0.8	-0.6	
30	-0.2	-0.5	-0.8	-0.8	

$0^{\circ} \rightarrow$ EF-Wind ward, $G H$ - Leeward
$90^{\circ} \rightarrow$ EG - Wind ward, FH - feeward \square

Moof	Wind Angle 0°		wind Angle 90°	
oggle	FF	GH	FG	FH
26.565	-0.372	-0.5	-0.8	-0.731

Cpi
to 2 preature
pi Tता

I5875, $A_{y} 27-6.13 .1, C_{p_{1}}= \pm 0.2$ o. sridian 1+1

Area (A)

$$
\text { Avee }=8 \times 2.2 .36=17.888 \mathrm{~mm}^{2}
$$

\rightarrow Wind Force

$$
\begin{aligned}
F & =\left(c_{p e}-c_{p i}\right) A p_{d} \quad{ }^{n} \rightarrow \text { Scmple Colculbition } \\
& =(-0.372-0.2) \times 17.888 \times 1.05 \\
& =-10.744 \mathrm{~kJ}
\end{aligned}
$$

Windward force at intermediate panel points $=-18.782 \mathrm{w}$

$$
\text { 1. 1. .. end panel points }=-18.782 / 2=-9.391 \mathrm{kw}
$$

Leeward force at intermedtate pancel points $=-17.486 / \mathrm{\omega}$

$$
\text { ‥" an ponel poids }=-17.486 / 2=-8.743 \mathrm{kw}
$$

(Pb) Design a roof truss to suit the following requirements,
span of taus $=16 \mathrm{~m}$
Rise of thurs $=4 \mathrm{~m}$
spacing of lows $=4 \mathrm{~m}$
Recufing shall be of CAI sheets
Live leal $=$ soling $/ \mathrm{m}^{2}$
wind pressure $=120 \mathrm{lg} / \mathrm{m}^{2}$ noind to roof.
Solution
Stop 1- Truss geometry
Slope, $\tan \theta=\frac{4}{8}=0.5$

$$
\theta=\tan ^{-1} 0.5=26.565
$$

Length of pend $=\sqrt{8^{2}+y^{2}}=8.944 \mathrm{~m}$
Length of each pane in one sill $=8.94414=2.236 \mathrm{~m}$
Length of each pard in plan $=2.236 \times \operatorname{co5} 26-565=2 \mathrm{~m}$

Step 2-Dead Load
Self waght of GI sheets $=150 \mathrm{~W} / \mathrm{m}^{2}$ (assume)
Self weight of purlin $=80 \mathrm{~N}^{2} \mathrm{~m}^{2}$ (assure)
weight of truss $=\left(\frac{s p a n}{3}+5\right) \times 10=\left(\frac{16}{3}+5\right) \times 60=103.33 \mathrm{~N} / \mathrm{m}^{2}$

Self waight of bracing $=12 \mathrm{~N} / \mathrm{m}^{2}$ (Assure)
Tutal dead load $=150+80+103 \cdot 33+12=345.33 \mathrm{Nm}^{2}$
Puln sparig(assuma)
Lacd at internediate pandes $=345.33 \times 4 \times 2=2762.64 \mathrm{~N}$
hoad at and poits $=2762.64 / 2=1381.32 \mathrm{~W}$

Recations
Tatel dounuared load $=(2762.64 \times 7)+(1381.32 \times 2)$

$$
=22101.12100
$$

Recdion at $A, \operatorname{and} O=22101.12 / 2=11050.56 \mathrm{~kW}$
Menber fores

Anclysing the tews by methd of points,

Cat sectuen (1) -(1) through $A B+A C$,
Talury monat about $C_{1} E M_{c}=0$

$$
\begin{aligned}
\Rightarrow & (11050.56 \times 2.5)-(1381.32 \times 25) \\
& +\left(F_{A B} \times 1.12\right)=0 \\
\Rightarrow & F_{A_{B}}=-21583.348 \mathrm{kN}
\end{aligned}
$$

$$
\left.\begin{array}{|c|}
\sin 26.565=\frac{B C}{A C} \\
\sin 26.565=\frac{B C}{2.50} \\
B C=1.12 \mathrm{~m}
\end{array} \right\rvert\, \begin{aligned}
& \cos 26.565=\frac{A B}{A C} \\
&
\end{aligned} \quad A C=\frac{2.236}{A C}
$$

Cut soction (2)-(2) therough $B D, B C+A C$,

$$
\begin{aligned}
& \sum M_{B}=0 \Rightarrow(11050.56 \times 2)-(1381.32 \times 2) \\
& -\left(\text { facx }^{\prime} \cdot 2\right)=0 \\
& F_{A C}=19338.48 \mathrm{~N} \\
& \sum M_{A}=0 \Rightarrow\left(F_{B C} \times 2.236\right)+(2762.64 \times 2) \\
& \Rightarrow \mathrm{FBC}=-2471 \cdot 0.05 \mathrm{~N} \\
& \rightarrow \text { (20) } \\
& \leq M_{c}=0 \\
& \left(\left(F_{B D} \times 1.12\right)-(2762.64 \times 0.55) \sin 26.565=\frac{A / B}{A B}\right. \\
& =-(1381.32 \times 2.5) \\
& +(11050.56 \times 28)=0 \\
& =\left.A\right|_{B} \mid 2.236 \\
& A_{B}^{\prime} B=1 M
\end{aligned}
$$

$$
\Rightarrow F_{B D}=-20349.804 \mathrm{~N}
$$

Cut section (3) (3) through $B Q_{1} C D, 185$

$$
\begin{aligned}
& \sin 26.565= \frac{C 1 D}{A D}=\frac{C 1 D}{4.472} \Rightarrow C D=2 n \\
& \cos 26.565= \frac{A C 1}{A D}=\frac{A C 1}{4.472} \Rightarrow A C^{1}=4 \mathrm{~m} \\
& E M_{D}=0 \Rightarrow-\left(F_{C E} \times 2\right)-(1381.32 \times 4)+(11050.56 \times 4) \\
&-(2762.64 \times 2) \\
& \Rightarrow F_{C E}=16575.84 \mathrm{~N} \\
& \sum M_{A}=0 \Rightarrow\left(F_{D E} \times 4472\right)+(2762.64 \times 2)+(2762.61 \times 11)=0
\end{aligned}
$$

From $\triangle A E D ;, \cos 26.565=\frac{4.472}{A E}$

$$
A E=5 m
$$

From \triangle cycle,
$\angle A E B=180-$
From $\triangle A B C, \angle A C B=180-90-26.565=63.435^{\circ}$
FroM $\triangle B C D, \tan \angle B C D=\frac{2.236}{1.12} \Rightarrow \angle B C D=63.394^{\circ}$

From-A FAD

Analysing by method of joints,
Joint C

$$
\begin{aligned}
& \sum F_{y}=0 \Rightarrow F_{C D} \sin 53.171-F_{B C} \sin 63.435=0 \\
& F_{C D} \sin 53.171-(-2471.055 \times \sin 63.435)=0 \xrightarrow[F_{A C}]{F_{C D}=27.435} \\
& \text { Simicrily find all forces, Various forces are given }
\end{aligned}
$$

below,

$$
\begin{aligned}
& F_{A B}=21583.348 \mathrm{~N} \text { (Compressive) } \\
& F_{A C}=19338.48 \mathrm{~N} \text { (tensile) } \\
& F_{B C}=2471.055 \mathrm{~N} \text { (compressive) } \\
& F_{B D}=20349.804 \mathrm{~N} \text { (compressive) } \\
& F_{C E}=16575.84 \mathrm{~N} \text { (tensile) } \\
& F_{C D}=2761.247 \mathrm{~N} \text { (tensile) }
\end{aligned}
$$

The fores are tabulated below,

Stop 3-Live lead.

$$
\text { Lie lond } \begin{aligned}
& =50{\mathrm{~kg} / \mathrm{m}^{2}}^{2} \\
& =0.5 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Load at intermediate panels $=0.5 \times 1 \times 2=4 \mathrm{NN}$ hack at and points $=\frac{4000}{2}=2000 \mathrm{~N} \quad=4000 \mathrm{~N}$ The forces determined by live load will be $\frac{4000^{-12}}{2762.64-12}$ times the deed lead fores

Step 4- wind lead

$$
\begin{aligned}
\text { Wind pressure } & =120 \mathrm{~kg} / \mathrm{m}^{2} \text { normal to raf } \\
& =120 \times 10 \\
& =1200 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Load at intermediate panels $=1200 \times 4 \times 2.236=1073.28 \mathrm{~N}$ Land at and panes $=1073.98 / 2=536.64 \mathrm{~N}$

Reactions H_{A}, V_{A} and v_{0} are found by method of seckans and methed of joints.
Step5-Load Combination
The total lead is determined from the surmidan of deal load + greater of line load or wind force. Summary of fores is given below,

Step6-Design of Puelin
Deal load
\Rightarrow Weight of aI sheet $=150 \mathrm{~N} / \mathrm{m}^{2}$, in $10: \cdots \mathrm{in}$.
\rightarrow Self weight of purlin $=80 \mathrm{Nm}^{2}$
Purlin spacing
Total dead lead $=150+80=230 \mathrm{~N} \mathrm{~m}^{2}=230 \times 9=460 \mathrm{~N} / \mathrm{m}$
Component of dead lead
$=411.437 \mathrm{~N} / \mathrm{m}$
Comporeat of deat loct parallel to rof $=460 \times \sin 26.565$

$$
=205.718 \mathrm{~N} / \mathrm{m}
$$

Live lood
Leve lead $=0.5 \mathrm{~N}^{\mathrm{N}} \mathrm{m}^{2}=500 \mathrm{Nm}^{2}$
componet of luie loud normed to rof $=500 \times \cos 26.565$

$$
\text { Componeat of dive lecd paadllel }=447.214 \mathrm{~N} / \mathrm{m}
$$

parallal to rof $=\operatorname{sos} x \sin 06.565$
Momeat

$$
=223.606 \mathrm{NK}
$$

$$
\text { momat }=\frac{w_{g l} l^{2}}{10}+\frac{w_{l l} l_{l}^{2}}{9}
$$

BM partlld to major principl axis ($U V<x i$)

$$
M_{v u}=\frac{411.437 \times 4^{2}}{10}+\frac{447.214 \times 4^{2}}{9}=1453.346 \mathrm{kNm}
$$

BM parallal to minor principel axis (Vyaxis)

$$
M_{y y}=\frac{205.718 \times 4^{2}}{10}+\frac{223.606 \times 4^{2}}{9}=726.671 \mathrm{RdM}
$$

Requirad sedion modulus, $2 \omega=\frac{M_{u v}}{2 j}\left(1+\frac{M_{v v}}{M_{\omega v}} \cdot \frac{2 \omega v}{2 v}\right)$

$$
\begin{aligned}
& =\frac{1453.346}{165}\left[1+\frac{726.671 \times 7}{1453.346}\right] \\
& =39.637 \mathrm{~m}^{3} \\
& =\frac{1453.346 \times 10^{3}}{165}\left[1+\frac{726.671 \times 10^{3} \times 7}{1453.346 \times 10^{3}}\right] \\
& =39636.624 \mathrm{~mm}^{3}=39.636 \mathrm{~cm}^{3}
\end{aligned}
$$

Choose I8A-150x ISJB 150 @ $7.11 \mathrm{~g} / \mathrm{m}$ with $z_{x x}=42.9 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& 2_{y y}=3.7 \mathrm{~cm}^{3} \\
& 2_{u v}=2 x x=42.9 \times 10^{3} \mathrm{~mm}^{3} ; \quad 2_{v 4}=2 y y=3.7 x_{0}{ }^{3} \mathrm{mv}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{b} & =\frac{M_{v w}}{2 v u}\left[1+\frac{M_{v v}}{M_{v u}} \cdot \frac{2 v v}{2 v}\right] \\
& =\frac{1453.346 \times 10^{3}}{42.9 \times 10^{3}}\left[1+\frac{726.671 \times 10^{3}}{1453.346 \times 10^{3}} \times \frac{42.9 \times 10^{3}}{3.7 \times 10^{3}}\right] \\
& =230.275 \mathrm{~N}^{3} \mathrm{~mm}^{2}>165 \mathrm{Nam}^{2}
\end{aligned}
$$

Try cnother sectuen IJ 48125 @ 11 -alglm. with

$$
\begin{aligned}
z_{v u} & =2 x x=65.1 \times 10^{3} \mathrm{~mm}^{3}, 2_{v y}=2_{y y}=11.6 \times 10^{3} \mathrm{~mm}^{3} \\
\sigma_{b} & =\frac{1453.346 \times 10^{3}}{65.1 \times 10^{3}}\left[1+\frac{726.621 \times 10^{3}}{1453.346 \times 10^{3}} \times \frac{65.1 \times 10^{3}}{11.6 \times 10^{3}}\right] \\
& =84.969 \mathrm{Nmm}^{2}<165 \mathrm{~N}\left(\mathrm{~mm}^{2}\right.
\end{aligned}
$$

Styp?-Design of Compiession menbers
Tupchard menbes $A B+B N$ has maximumen compressine fore of 6988335 N with pard manber length 2.236 m
Is800, Pgi44, Table 10, Buckiry class 'C' for angle sectuon

Complessice force, $\mathrm{Pd}_{d}=A f_{2 d}$

$$
\begin{aligned}
69883.35 & =A \times 90 \\
A & =776.482 \mathrm{~mm}^{2}
\end{aligned}
$$

For single arfe area $=776.482 / 2=388.241 \mathrm{~mm}^{2}=3.88 \mathrm{~cm}^{2}$ Choose ISA $50 \times 50 \times 5 \mathrm{~mm}$ with area $=4.79 \mathrm{~cm}^{2}=179 \mathrm{~mm}^{2}$

$$
f_{x_{x}}=1.52 \mathrm{~cm}\left(S P G, P_{2} 8, \text { Thl III }\right)
$$

$$
\begin{aligned}
\text { Effectue lenghl } & =0.7 \text { te } 0.85 \mathrm{~L} \text { (I5 } 800 \text { P2 } 48-7.5 .2 .1) \\
& =0.85 \times 2.236=1.901 \mathrm{~m}
\end{aligned}
$$

Slenderness ratro, $\lambda=\frac{k c}{r_{\text {min }}}=\frac{1.0 \times 1.901 \times 10^{3}(k=1.0 \text { forslasil })}{1.52 \times 10}$
For $B C-C, \lambda=125$, lable $9(c), ~ I 8800$, Pg 42 $f_{y}=250 \mathrm{~N}^{\mathrm{Nm}}{ }^{2}$
$>$ fud
$120 \quad 83.7$
$130 \quad 74.3$
Fon $x=125, f_{d} d=79{\mathrm{~N} / \mathrm{mn}^{2}}^{2}$

$$
P=A \times f_{c} d=2 \times 479 \times 79=75682 \mathrm{~N}>6988335 \mathrm{~N}
$$

Hace sfe.
Stop 8 - Dasign of tensiun nembers
Bottom chord menber AC has maximum tensile fore of 79338.48 N

$$
\text { Crioss aree, } \begin{aligned}
A_{y} & =\frac{T_{4} \mathrm{Vmo}_{\mathrm{m}}}{f_{y}}(I 5800 \mathrm{Pg} 32,6.2) \\
& =\frac{79338.48 \times 1.1}{250} \\
& =349.089 \mathrm{~mm}^{2} \\
\text { For }- \text { sigle agge area } & =349.089 / 2=174.545 \mathrm{~cm}^{2}=1.74 \mathrm{sem}^{2}
\end{aligned}
$$

Sross area is increased by 25 to 40%,

$$
\text { Area }=349.089+\frac{25}{100} \times 349.089=436.361 \mathrm{~mm}^{2}
$$

For single aregle, $\operatorname{Arca}=\frac{436.361}{2}=218.181 \mathrm{~mm}^{2}=2.182 \mathrm{~cm}^{2}$
$\left(5 \mathrm{PG}, \mathrm{Ply}_{\mathrm{y}} \mathrm{P}, 7 \mathrm{c} 66\right.$ III $)$
Choose ISA $50 \times 50 \times 3 \mathrm{~mm}$ with $A_{1 r a}=2.95 \mathrm{~cm}^{2}=295 \mathrm{~cm}^{2}$

$$
\text { Sregth of anfe, } T_{u}=\frac{\text { Fgfy }^{2}=\frac{2 \times 295 \times 250}{2 \mathrm{~ms}}=\frac{134090.91 \mathrm{~N}}{1.1}>79338.48 \mathrm{~N}}{}
$$

Stap-Sladeress
Step 9 -Design of joints

$$
\text { Slenderess eatio }=\frac{l}{r}=\frac{2500}{15.3}=163.399<350
$$

Thicloness of gusict plate, $=8 \mathrm{~mm}$ Niameter of reviets, $d=16 \mathrm{~mm}$
r riace of r ind $d=10{ }^{2}$
Gross deameter of rineds $7 d_{0}=16+2=18 \mathrm{~cm}$
The angle sections are cornected by gurset plote by bults as in fiy.

Stragle of bult in. shear (I5800 Pg75, 10.3.3)

$$
Y_{d s b}=v_{n s b} / \nu_{n b}
$$

where $U_{n s b}=\frac{f_{2}}{\sqrt{3}}\left[n_{n} A_{n S}+n_{s} A_{S B}\right]$

$$
\begin{aligned}
\Rightarrow A_{n} S & =0.78 \times \frac{\pi}{4} \times 16^{2}=156.828 \mathrm{~mm}^{2}, \quad A_{S S}=\frac{\pi}{4} \times 10^{2}=201.062 \mathrm{~cm}^{2} \\
\rightarrow n_{n} & =n_{S} \\
\rightarrow f_{u} & =400 \mathrm{~N} / \mathrm{mm}^{2} \\
& \therefore V_{n b}=\frac{400}{\sqrt{3}}[(1 \times 156.828)+(1 \times 201.062)] \\
& =82651.155 \mathrm{~N}
\end{aligned}
$$

$$
Y_{d s 5}=82651 \cdot 155 / 1 \cdot 25=66120-124 \mathrm{~N}
$$

Sbeyth of bolt, in bearing

$$
v_{d p b}=V_{n p b} \mid \nu_{m b}
$$

$$
\text { Where } y_{n_{p}}=2.5 k_{6} d t f_{4}
$$

${ }^{k_{b}}$ is least of $\frac{e}{3 d_{0}}, \frac{p}{3 d_{0}}-025, \frac{f_{u} b}{f_{u}}, 1.0$

$$
\begin{align*}
e=1.5 d_{0} & =1.5 \times 18=27=30 \mathrm{~km} \\
p=2.5 d & =2.5 \times 16=40 \mathrm{~mm} \\
\therefore K_{b} & =\frac{30}{3 \times 18}, \frac{40}{3 \times 18}-0.25, \frac{400}{410}, 10 \\
& =0.556,0.491,0.996,1.0 \\
\therefore k_{b} & =0.491 \\
V_{\text {npb }} & =2.5 \times 0.491 \times 18 \times 8 \times 410=64419.2 \mathrm{~N}- \tag{2}
\end{align*}
$$

$$
\begin{equation*}
Y_{d p b}=64419.2 / 125=51535.36 \mathrm{~N} \tag{2}
\end{equation*}
$$

Rinet value is the leest of (1) + (2),

$$
\begin{aligned}
& R=51535 \cdot 36 \mathrm{~N} \\
& \text { No. of bolts }=\frac{\text { Foree }}{\text { Ruict value }}=\frac{69883.35}{\text { sis35.36 }}=1.356 \geq 2 \\
& (\text { menter } A B)
\end{aligned}
$$

Similarly provide ruiets for other menbers.
Step 10 - Design of end
Maximum normal reachon of bearing $=125 \mathrm{~kW}$ (Aerme) Noof evicts requised for conneitran of shoe corfes with guset plate $=\frac{\text { Reacion }}{\text { Reied value }}=\frac{125 \times 6^{3}}{51355.36}=2.426=3$

4 rivets are provided to connect shoe angles with gusset plate. y rivets are also provided to connect shoe angles with base plate. Two $I S A \quad 80 \mathrm{~mm} \times 80 \mathrm{~mm} \times 8 \mathrm{~mm}, 45 \mathrm{cmm}$ long are used for shoe angles.
Bearing plate
Nominal reaction $=125 \mathrm{kw}$
Le.ghe of base plate $=450 \mathrm{~cm}$
Width of bearing plate $=80+80+10=170 \mathrm{~mm}$
Bearing pressure on concrete bearing pad $=\frac{P}{A}$

$$
=\frac{125 \times 10^{3}}{450 \times 170}
$$

$$
\text { Consider } 1 \mathrm{~mm} \text { stop of base }=1.634 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\begin{aligned}
& =1.634 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { bending moment, }
\end{aligned}
$$

$$
M=\frac{1.634 \times(80-8)^{2}}{2}=4235.33 \mathrm{NMM}-\mathrm{CO}
$$

Monet of resistance of base plebe $=\frac{185 \times 1 \times+2}{6}$ (2)

$$
\begin{aligned}
\text { Fquatiy (1) }+(2) \Rightarrow \frac{185 t^{2}}{6} & =4235.33 \\
t & =11.72 \mathrm{~mm}
\end{aligned}
$$

\therefore Thiclaess of base plebe required, $t_{1}=11.72-8=3.72 \mathrm{~mm}$ Provide 6 mn thick base plate $450 \mathrm{~m} \times 120 \mathrm{~mm}+6 \mathrm{~mm}$ bearing Pate below the bar pele. An elliptical hole is kept on each side of shoe angles and bsa plate. The bare plate can slide over bearing plate
Anchor plate
Pull is condor $\mathrm{Lath}^{2}=7.50 \mathrm{~kJ}$
Allowable axial tension in anchor bolt is $06 \times 260=156 \mathrm{w}_{\mathrm{m}} \mathrm{m}^{2}$
Area require at the roof of thread $\frac{7.50 \mathrm{~m} 6^{3}}{156}=48,00 \mathrm{~mm} \mathrm{~m}^{2}$ Two noriad 20 mm diameter actor butts are provided on essen tide of shoe angles.

Purlin
Pulins are structural menders subjected to transuere loads and rest on top chord members of red truss The purlin supports the sheeting that covers the roo truss.
Pb) Design an I sechan purlin te support galvanized corrugated iron sheet roof. The pualins are 1.25 m apart over roof trusses spaced sin cadre te cate The reef surface has an inclination of 30° to the horizontd. The weight of carrugated iron shed is $0.1331 \mathrm{ku} / \mathrm{m}^{2}$. The weight of fixtures at $0.053 \mathrm{kw} / \mathrm{m}^{2}$ The design wind pressure for meduim permeability is $1.50 \mathrm{ku} / \mathrm{m}^{2}$ (outward) parallel to ridge
Solution
Step - Deed Loud
weight of iron sheet $=$
Given
Spacing of purlin $=1.25 \mathrm{~m}$

Spacing of lewis $=S_{M}$
Indiction of roof surface, $\theta=30^{\circ}$
weight of corrugated iron shed $=0.1331 \mathrm{ku} / \mathrm{m}^{2}$
weight of fixtures $=0.053 \mathrm{kv}^{2} \mathrm{~m}^{2}$
Wind pressure $=1.50 \mathrm{ks} / \mathrm{m}^{2}$ Contward)

Solution
Step 1-Dead head
weight of geluenized iron shat $=0.1331 \times 1.25=0.1664 \mathrm{la} / \mathrm{m}$
Weight of fixtures $=0.053 \times 1.25=0.0663 \mathrm{kN} / \mathrm{m}$
Self weight of purlin (assumed) $=0.12 \mathrm{k} / \mathrm{m}$
Total deed laud $=0.1664+0.0663+0.12=0.3527 \mathrm{k} / \mathrm{m}$

$$
\approx 0.36 \mathrm{kv} / \mathrm{m}
$$

\rightarrow Component of dead bead normal te roof $=0.36 \times \cos 30$
\rightarrow Component of live load parallel to raf $=0.312 \mathrm{kw} / \mathrm{m}$
Step 2-Line loud

$$
=0.18 \mathrm{kN} / \mathrm{m}
$$

Live loud for sloping roof $=0.75-(\theta-10) 0.02$ with slope greater then 10° subject to a minimum of $0.4 \mathrm{~kJ} / \mathrm{m}^{2}$

$$
\begin{aligned}
& =0.75-[(30-10) 0.022] \\
& =0.35 \mathrm{kw}^{2} \mathrm{~m}^{\prime \prime}<0.4 \mathrm{ku} / \mathrm{m}^{2}
\end{aligned}
$$

Live lo cd $=0.4 \mathrm{k} / \mathrm{m}^{2}$
Canponat of live load normal te oof $=0.4 \times \cos 30$
Told line lead $=0.4 \times 1.25=0.5 \mathrm{kw} / \mathrm{m}$
\rightarrow Component of line load normal to reef $=0.5 \times \cos 30$

$$
=0.433 \mathrm{kw} / \mathrm{m}
$$

, Compress of live load parallel to $\operatorname{rof}=0.5 \times \sin 30$

$$
=0.25 \mathrm{k} / \mathrm{m}
$$

Step 3 -wind Load
Wind loaded (parallel te ridge) $=1.50 \mathrm{kw} \mathrm{m}^{2}$

Step 4. Combination of leads
(1) $D L+L L$
(ii) $P L+L L+W L$ (parallel te ridge). In case the design wind pressure ats outward (negative) the imposed live loud shall not be considered.
Step 5 - Design of purlin for $D L+L L$

$$
\text { Monet }=\frac{w_{a} l^{2}}{10}+\frac{w_{u} l^{2}}{9}
$$

$\rightarrow 13 M$ dee to $D C H L$ parallel to the major principal axis (UU axes)

$$
M_{\omega u}=\frac{0.312 \times 5^{2}}{10}+\frac{0.433 \times 5^{2}}{9}=1.983 \mathrm{k} \mathrm{\omega m}
$$

\rightarrow ISM due to $D A+L, \ldots$ parallel to minor principal axis (v axis)

$$
M_{V V}=\frac{0.18 \times 5^{2}}{10}+\frac{0.25 \times 5^{2}}{9}=1.144 \mathrm{kwm}
$$

Neavired Sedan modulus,

$$
Z_{u v}=\frac{M_{v y}}{\sigma_{b}}\left(1+\frac{M_{v y}}{M_{v u}} \cdot \frac{Z_{v u}}{Z_{x y}}\right)
$$

Assuming $z_{\text {out }} z_{n}=7$ for I section purlin a ad

$$
\begin{aligned}
\sigma_{b} & =0.66 f_{y}=0.66 \times 250=155 \mathrm{~N} / \mathrm{mm}^{3} \\
z_{0 u} & =\frac{1.983 \times 10^{6}}{1.55}\left(1+\frac{1.144 \times 10^{6}}{1.983 \times 10^{6}} \times 7\right) \\
& =60.552 \times 10^{3} \mathrm{~mm}^{3}
\end{aligned}
$$

From sp 6-Pg2, Table 1, choose ISuB125 (Ol1.9ly/m
with $2_{2 x}=65 \cdot 1 \mathrm{~cm}^{3}\left(p_{y}\right), 2_{y_{y}}=11.6 \mathrm{~cm}^{3}$

$$
z_{w v}=z_{x x}=65.1 \times 10^{3} \mathrm{~mm}^{3} ; z_{v v}=z_{y y}=11.6 \times 10^{3} \mathrm{~mm}^{3}
$$

Sub in (1)

$$
\begin{aligned}
\Rightarrow \sigma_{b} & =\frac{M_{v u}}{Z_{v u}}\left(1+\frac{M_{v y}}{M_{v u}} \cdot \frac{Z_{v u}}{2 v v}\right) \\
& =\frac{1.983 \times 10^{6}}{65.1 \times 10^{3}}\left[1+\frac{1.144 \times 10^{6}}{1.983 \times 10^{6}} \times \frac{651 \times 10^{3}}{11.6 \times 10^{3}}\right] \\
& =129.02 \mathrm{~N} / \mathrm{mm}^{2}<165 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Step6-Design of purlin for DL+LLT WL
The wind lead acts outward (negative), hence live load 15 not, considered with the combination. BM due to $D L+w L$. pacllel to moor prixiph axis

$$
\begin{aligned}
M_{\text {omat }} & =\frac{w_{a} l^{2}}{10}+\frac{w_{w L} l^{2}}{10} \\
M_{\omega U} & =\frac{0.312 \times 5^{2}}{10}+\left(\frac{-1.5 \times 5^{2}}{10}\right) \\
& =\frac{-2.97 \mathrm{kWm}}{M_{V V}}=\frac{0.18 \times 5^{2}}{10}+(0)
\end{aligned}
$$

Po due te $x+w L$ puablel te minor principe axis,

$$
\begin{aligned}
M_{V Y} & =\left(\frac{0.18 \times 5^{2}}{10}\right)+0 \\
& =0.45 \mathrm{kwm} \\
\text { Required } z_{V U} & =\frac{M_{U U}}{\sigma_{b}}\left(1+\frac{M_{v v}}{M_{U U}} \cdot \frac{Z_{V U}}{z_{v v}}\right) \\
& =\frac{2.97 \times 10^{6}}{165}\left(1+\frac{0.45 \times 10^{6}}{2.97 \times 70^{6}}\right) \\
& =37.04 \times 10^{3} \mathrm{~mm}^{3}
\end{aligned}
$$

Provided section hes $z_{x_{2}}=65.1 \mathrm{~cm}^{3}$. Hance ok Sob in (1)

$$
\begin{aligned}
\sigma_{b} & =\frac{2.97 \times 10^{6}}{05.1 \times 10^{3}}\left[1+\frac{0.45 \times 10^{6}}{2.97 \times 10^{6}} \times 7\right] \\
& =94.01 \mathrm{~N} / \mathrm{mm}^{2}<165 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

(PB) Design an iron angle purlin for a trussed roof for the following data.
span of raf trues $=12 \mathrm{~m}$
spacing of roof truss $=5 \mathrm{~m}$
Sparing of purlins alan the slope of roof tows $=1.2 \mathrm{~m}$
Slope of reef tows $=1$ vertical to 2 horizantal
wind load on roof surface normal to roof $=1.04 \mathrm{kw} / \mathrm{m}^{2}$ vertical loud from roof sheeting $=0.200 \mathrm{ku} / \mathrm{m}^{2}$
Solution
Step 1-Slope of raf truss

$$
\begin{gathered}
\text { Slope }=\tan \theta=\frac{\text { vertical }}{\text { horizantel }}=\frac{1}{2}=0.5 \\
\therefore \theta=\tan ^{-1}(0.5)=26.565^{\circ}
\end{gathered}
$$

Step 2 -Vertical load on purlin (Ditu)
vertical load from rect sheeting $=0.2 \mathrm{kulm}^{2}=0.2 \times 1.2=0.24 \mathrm{k} / \mathrm{m}$
self weight of purlin(assum) $=0.12 \mathrm{kulm}$

$$
\text { Total load (uatical) }=\overline{0.36 \mathrm{kw} / \mathrm{m}}
$$

Skep 3 -Wind load
Wind loud normed to roof $=1.04 \mathrm{kN} / \mathrm{m}^{2}=1.04 \times 1.2=1.2 \mathrm{yr} \mathrm{com}$
Stop 4-Design of purlin
Total lad normal te raf $=0.36+1.248=1.608 \mathrm{ku} / \mathrm{m}$

Mamat, $M=\frac{W^{2}}{10}=\frac{1.0 .08 \times 5^{2}}{10}=4.021 \mathrm{wm}$
-liequied scction madulus, $z=\frac{M}{\sigma}$ where $\sigma=0.66 \mathrm{fy}$

$$
=0.66 \times 250
$$

$=165 \mathrm{Nam}^{2}$

$$
2=\left(4.02 \times 10^{6}\right) / 165=24.63 \times 165 \mathrm{Nam}^{3} \mathrm{~mm}^{3}
$$

\rightarrow Depth of cigle prelin $=\frac{1}{45}=\frac{5000}{45}=111.11 \mathrm{~m}$
\rightarrow width of pualin
As wind loud is considered, slress con be increasal

$$
\begin{gathered}
\text { by } 331 / 3!(1.333), \sigma=1.333 \times 165=219.945{\mathrm{~N} / \mathrm{mN}^{2}}^{2} \\
2=\frac{4.02 \times 10^{6}}{219.945}=18.277 \times 10^{3} \mathrm{~mm}^{2}
\end{gathered}
$$

\rightarrow Depth of agle purlin $=\frac{1}{45}=\frac{\text { sewo }}{45}=111.11 \mathrm{~mm}$
\rightarrow width of angle purlin $=\frac{1}{60}=\frac{5000}{60}=83.33 \mathrm{~mm}$
Chouse ISA $125 \times 95 \times 6 \mathrm{~mm}$ @ $0.129 \mathrm{kw} / \mathrm{m}^{2}$ with $z=234 \times 1 \mathrm{~mm}^{3}$

Gantry Girder
Definition
Overhead travelling cranes are used in industrial buildings te lift and transport heavy. machineries and assembled parts from ane place to another. For movemed of the crane, wheels are attacked to their ends. The wheels move over rails which are intern placed over steel I beams called as Gantry Girder.
Loads Considered
\rightarrow Reacicon from the crane girders acting vertically downwards
\rightarrow longitudinal trust due to starting or stoping of crane acting in longitudinal direction
\rightarrow Lateral thrust due to starting and stopping of crab acting horizontally, normal te gantry girders
\rightarrow longitudinal hormantal force along the crane rail.
Assumptions made
\rightarrow The vertical loads are resisted by the entire section of girder
\rightarrow The horizontal loads are resisted by the compression flange
Design Procedure

1) Maximum wheel load is determined
(1) Weight of trolley and lifted load are considered as moving load
(ii) Self weight of crane girder is considered as vil
(Iii) The maximum whee t laud is half the vertical fore transferred from crone girder to gater girder
2). Maximum Beading Monet is determined

This consul of
(1) BM due to wheel load (with raped)
(ii) BM due to dead load of girder and rails, 7 The Bn due to deed loud is maximum at care of: span
3) Maximum Shear Force is determined

This consist of
(1) SF due to wheel load (with input)
(ii) SF, due te dead load of gater girder and rats The SF is maximum when one of the wheels is at support
4) Soleciten of trial section

Trial section is choose such that
(i) Economic depth is $1 / 12^{\text {th }}$ of span
(ii) Compression flange is leet $1 / 25^{\text {th }}$ of span
(is) Section modulus should be yo te sol, mare than the calculated.
s) Glulatean of secund properties

Poperies like $I_{x x}, I_{y y}, 2_{e x}, 2_{y}, 2_{p x}, 2_{p y}$ are Calculated
6) Setter clasificiateon

Section is classified ". based on b/tf and ditto. value as plastre, somicampact or compact. Plastic sections are preferral
8) Check for mamet copruly

The girders is laterally suppoided and hance bending staengle is given as

$$
\mu_{d_{2}}=\frac{B_{b_{2}} p f_{y}}{a_{m_{0}}}<\frac{1.22 e f_{y}}{\alpha_{1} 0}
$$

The bending slegesth obtained should be greater then applied bending moment.
-) Check for shear

$$
\text { Design shear, }=\frac{A_{v} f_{y w}}{\sqrt{3} \times 2 m} \text {. }
$$

This should be greater than applied shear force
8) Cheek for biaxial bending

Interateen formula $\frac{M_{2}}{M_{d 2}}+\frac{M_{y}}{M_{d y}} \leq 100$ is checked
a) Check for web buckling and bearing

Becelling - $\frac{d}{t_{w}}<67$, if not shffeners to be provided Bearing resistance, $f_{w}=\frac{\left(b_{1}+n_{2}\right)}{2_{n 0}}$ wa $_{0}$
D) Design of bolts ar welds
11) Check for deflection

$$
\delta=\frac{w c^{3} \times\left(\frac{3 a}{4 L}-\frac{a^{3}}{13}\right)}{66 I}<\frac{5 p a n}{750}
$$

Where $L \rightarrow$ Span

$$
a=\frac{1-c}{2}
$$

c) Wheel base

Example 14.3. Design a simply supported gantry girder to carry one electric over head travelling crane.

Crane capacity $=300 \mathrm{kN}$
Weight of crane excluding trolley $=190 \mathrm{kN}$
Weight of trolley $=100 \mathrm{kN}$
Minimum approach of crane hook $=1.2$ metres
Distance between centres of crane wheel $=3.5$ metres
Distance between centres of crane wheel $=18$ metres
Span of gantry girder $=6$ metres
Weight of rail section $=0.300 \mathrm{kN} / \mathrm{m}$
Height of rafl section $=75 \mathrm{~mm}$

Design :

Step 1 : Maximum wheel load

Fig. 14.5.
Weight of trolley + lifted load $=(300+100)=400 \mathrm{kN}$
The weight of crane (excluding trolley) 190 kN acts as uniformly distributed live load as shown in Fig. 14.5.

The vertical reaction on each wheel of crane would be maximum, when trolley is at nearest distance to trolley girder as shown in Fig. 14.5.

Take moment about B , then reaction at A

$$
R_{A}=\frac{1}{18}\left[400 \times 16.8+190 \times \frac{18}{2}\right]=468 \mathrm{kN}
$$

This vertical load at one end of the crane bridge is transferred to the gantry girder through two wheels.

Maximum vertical load on each wheel of crane, $=(1 / 2 \times 468)=234 \mathrm{kN}$
Step 2': Maximum bending moment (due to D.L. + L.L. + I.L.)
The maximum bending moment in the gantry girder under a moving load occurs when the life of action of that load and c.g. of the loads are at equal distance from the centre of span. That is,

$$
E C=C F=0.875 \text { (Fig. 14.6) }
$$

Fig. 14.6.
The reaction at the supports A and B are as follows :

$$
\begin{aligned}
& R_{A}=234 \times \frac{1}{6} \mathrm{l}(6-0.375)+2.125 \mathrm{~J}=302.23 \mathrm{kN} \\
& \left.R_{B}=2 \times 234-302.23\right)=165.77 \mathrm{kN}
\end{aligned}
$$

Bending (Flexural) \& shear strength of laterally unsupported Steel Beams
Maximum bending moment due to moving load

$$
M_{F}=(165.77 \times 2.125)=352.3 \mathrm{kN}
$$

Add 25 per cent impact moment vii., $88.1 \mathrm{kN}-\mathrm{m}$
(1) Live load moment $=(352.3+88.1)=440.4 \mathrm{kN}-\mathrm{m}$

Assume self-weight of the girder as $2 \mathrm{kN} / \mathrm{m}$
Weight of rail section is $0.300 \mathrm{kN} / \mathrm{m}$, Total dead load $=2.3 \mathrm{kN} / \mathrm{m}$
Maximum bending moment due to dead load

$$
\left(\frac{\mathrm{wl}{ }^{2}}{8}\right)=\left(\frac{2.3 \times 6 \times 6}{8}\right)=10.35 \mathrm{kN}-\mathrm{m}
$$

(2) Dead load moment $=10.35 \mathrm{kN}-\mathrm{m}$
(3) Total vertical moment $=(440.4+10.35)=450.75 \mathrm{kN} / \mathrm{m}$

Assume allowable bending compressive stress, $=(0.66 \times 250)=165 \mathrm{~N} / \mathrm{mm}^{2}$ The section modulus required for bending moment is vertical plane (approximately)

$$
Z=\left(\frac{450.75 \times 1000 \times 1000}{165}\right)=2731.8 \times 10^{3} \mathrm{~mm}^{3}
$$

From steel section tables, try WB 600, © $1.337 \mathrm{kN} / \mathrm{m}$ and LC 300 , © $0.331 \mathrm{kN} / \mathrm{m}$. The section of the gantry is shown in Fig. 14.7.

GANTRY GIRDER
Fig. 14.7.
Sectional area of beam section is $17038 \mathrm{~mm}^{2}$ Section area of channel sectio is $4211 \mathrm{~mm}^{2}$ Total section area is $21249 \mathrm{~mm}^{2}$

Thickness of flange of beam section, t is 21.3 mm
Let y be the distance of neutral axis of built-up section from neutral axis of beam section

Moment of inertia of built-up section about xx-axis

$$
\mathrm{I}_{\mathrm{yy}}(\text { gross })=1106198.5+170.38 \times 5.56^{2}+346+42.11
$$

$$
\begin{aligned}
& \text { ny (gross) } \left.=5.5)^{2}\right) \times 10^{4} \mathrm{~mm}^{2}=133334.5 \times 10^{4} \mathrm{~mm}^{4} \\
& \times(28.12-5.568 .5
\end{aligned}
$$

Moment of inertia of built-up section about yy-axis

$$
1_{y y}(\text { gross })=[4702.5+6047.9] \times 10^{4}=10750.4 \times 10^{4} \mathrm{~mm}^{4}
$$

Bending stress due to vertical loading
Actual bending compressive stress for vertical loading

$$
\sigma_{\text {be. ..cal }}=\left(\frac{450.75 \times 1000 \times 1000 \times 251.1}{133334.5}\right)=84.8867 \mathrm{~N} / \mathrm{mm}^{2}
$$

Actual bending tensile stress for vertical loading

$$
\begin{aligned}
\sigma_{\text {bex.cal }} & =\left(\frac{450.75 \times 1000 \times 1000 \times 355.6}{122224.5 \times 10^{4}}\right)=119.4 \mathrm{~N} / \mathrm{mm}^{2} \\
& <(1.10 \times 165)=181.5 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Step 3 : Maximum bending moment due to horizontal (transverse) force
Horizontal force transverse to the rail
10 percent of (weight of trolley + lifted load) $=1 / 10 \times(300+100)=40 \mathrm{kN}$ Horizontal force transverse to the rail on each wheel or crane, $=20 \mathrm{kN}$ Horizontasl reaction at support A (Figs. 14.8 and 14.8)

$$
=20 / 234 \times 302.33=25.83 \mathrm{kN}
$$

Horizontal reaction at support $B=14.17 \mathrm{kN}$
Horizontal moment, $14.17 \times 2.125=30.1 \mathrm{kN}-\mathrm{m}$

Fig. 14.8 .
Step 4 : Bending moment in horizontal plane

$$
\text { Horizontal moment }=30.10 \mathrm{kN}-\mathrm{m}
$$

The moment of inertia of compression flange about yy -axis (considering I_{yy} of compression flange of beam section as half of that for beam section)
$\mathrm{t}_{\mathrm{y} y}=\left\{6047.9+1 / 2 \times 4702.5 \mid \times 10^{4}=8399.6 \times 10^{4} \mathrm{~mm}^{4}\right.$
Bending compressive stress in horizontal plane (Bottom flange is neglected).

$$
\sigma_{\text {bc. .cal }}=\left(\frac{30.1 \times 1000 \times 1000 \times 150}{8399.6 \times 10^{4}}\right)=53.58 \mathrm{~N} / \mathrm{mm}^{2}
$$

Step 5 : Allowable stress in horizontal plane
Let \bar{y}_{1} be the distance of compression flange from top fibre

$$
\bar{y}_{1}=\left[\frac{4211 \times 25.5+250 \times 21.3(6.7+10.65)}{4211+250 \times 21.3}\right]=20.9 \mathrm{~mm}
$$

Distance between c.g. to c.g. of top and bottom flanges

$$
\mathrm{h}=(605.7-20.9-10.6)=575.2 \mathrm{~mm}
$$

Section modulus about xx -axds reference to the compression flange

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{xx}}=\left[\frac{133334.5 \times 10^{4}}{(300+6.7-55.6)}\right]=5308.8 \times 10^{3} \mathrm{~mm}^{3} \\
& \omega=\left(\frac{\text { Moment of inertia of comp. flange about yy-axis }}{\text { Moment of inertia of built up section about yy-axis }}\right) \\
& \omega=\left(\frac{8399.6 \times 10^{4}}{10750.4 \times 10^{4}}\right)=0.78
\end{aligned}
$$

From is : 800-1984, $k_{1}=0.28$
Effective length of compression flange $=6000 \mathrm{~mm}$
Radius of gyration of the completion section about yy-axis

$$
r_{y}=\left(\frac{10750.4 \times 10^{4}}{21249}\right)^{1 / 2}=79.58 \mathrm{~mm}
$$

Slenderness ratio $=\binom{6000}{79.58}=75.39$
Overall depth. $\mathrm{D}=606.7 \mathrm{~mm}$
Mean thickness of flange $T=\left(\mathrm{t}_{\mathrm{f}}=21.3+6.7\right)=28.0$
Ratio $(\mathrm{D} / \mathrm{T})=21.668$
From is : 800-1984. Table 14.2. $X=632.02$ and $Y=503.27$
From Eq. 14., the elastic critical stress
$\mathrm{f}_{\mathrm{w}}=\mathrm{k}_{1}\left(\mathrm{X}+\mathrm{k}_{2} \mathrm{Y}\right) c_{2} / \mathrm{c}_{1}=1.0(632.02+0.28 \times 503.27) \times(3067 / 300)$

$$
=790.20 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{MPa})
$$

Let the value of yield stress for the structural steel be $250 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\text { Ratio }\left(\frac{T}{t_{w}}\right)=\left(\frac{28}{11.2}\right)=2.5>2.0
$$

$\therefore f_{f^{b}}$ is not increased by 20 percent. From IS : 800-1984, Table $14.2, \sigma_{\mathrm{cb}}=145$
Step 6 : Check for combined bending compressive stress in extreme fibre

$$
\begin{aligned}
& \left(\sigma_{\text {bex.cal }}+\sigma_{\text {bcy.cal }}\right)=(84.498+53.58) \\
& 137.98 \mathrm{~N} / \mathrm{mm}^{2}<1.1 \times 145=159.5 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Hence design is safe and satisfactory.
Step 7 : Horizontal (longitudinal) force along the rails
5% of the static wheel load $=\left(\frac{1}{20} \times 2 \times 234\right)=23.4 \mathrm{kN}$
Height of rail $=75 \mathrm{~mm}$
Bending moment in the longitudinal direction, $=23.4 \times(75+251.1)=7630.74$ $\mathrm{mm}-\mathrm{kN}$

Stress in longitudinal direction

$$
\begin{aligned}
& \left(\frac{P}{A}+\frac{M}{Z}\right)=\left(\frac{23.4 \times 1000}{21249}+\frac{7630.74 \times 1000}{5308 \times 104}\right) \mathrm{N} / \mathrm{mm}^{2} \\
& (1.10+14.376)=2.538 \mathrm{~N} / \mathrm{mm}^{2}(\text { Very small })
\end{aligned}
$$

Shear force

Maximum shear force in the gantry girder

$$
\left(234+234 \times \frac{2.5}{6.0}\right)=331 \mathrm{kN}
$$

Add 25% for impact $=82.75 \mathrm{kN}$
Dead load shear $=\left[\begin{array}{c}(1337+331) 6 \\ 2 \times 1000\end{array}\right]=5.61 \mathrm{kN}$
Total shear $=419.36 \mathrm{kN}$
Intensity of horizontal shear stress per mm length

$$
\mathrm{f}_{y}=(\mathrm{FQ} / \mathrm{I})(\mathrm{O}=\mathrm{A} \cdot \mathrm{y})
$$

Consider the portion of web of flange only.

$$
\begin{aligned}
& \text { Area }=(6.7 \times 300)=2000 \mathrm{~mm}^{2} \\
& \text { From NA, y }=251.1-1 / 2 \times 6.7=247.75 \mathrm{~mm} \\
& \tau_{\mathrm{v}}=\binom{419.36 \times 2000 \times 247.75 \times 1000}{13334.5 \times 10^{4}}=155.84 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Step 8 : Rivet value

Bending (Flexural) \& shear strength of laterally unsupported Steel Beams

Use 22 mm diameter power driven rivets.
Strength of power driven rivets in single shear

$$
\left(\frac{\pi}{4} \frac{(23.5)^{2} \times 100}{1000}\right)=43.35 \mathrm{kN}
$$

Strength of rivet in bearing

$$
\left(23.5 \times \frac{6.7 \times 300}{1000}\right)=47.235 \mathrm{kN}
$$

Rivet value, $\mathrm{R}=43.35 \mathrm{kN}$

$$
\text { Pitch of rivets }=\left(\frac{43.35 \times 1000}{155.84}\right)=278.17 \mathrm{~mm}
$$

Rivets are provided in two lines

$$
\therefore 2 . \mathrm{p}=556.34 \mathrm{~mm}
$$

Maximum allowable pitch in compression

$$
=(12 \times 6.7)=80.4 \mathrm{~mm}
$$

Provide rivets at 80 mm pitch throughout the length of gantry girder.

Plate Girder
A plate gird is a Ibear built up of steed plates using bolting or welling. It 15 a deep flexwal menses used to carry heavy loads on langer spans. Plate girders ae normally used in bridges and sometimes in buildings when it is required do support heavy concentrated loads.
Hidvantages of plate girders suer tonuses
The what practical alternative to plate girders is trusses as they are cenomicd. I towene

Pplde gidas have following advoileges
\rightarrow Cost of fubsication is low when corpared to busses
\rightarrow Ercician is futser ad deaper when ..
\rightarrow Plate girders requires snall vecticel clearance
\rightarrow Resist vibration and impat loads
\rightarrow Plate gircers are sefe (bendiy of plates is saff thas menters)
\rightarrow Cen be laily pürded
DDaduatzages
\rightarrow Heavier then trues
\rightarrow Low torsiunal stiffoess
\rightarrow Naed lage nunber of connedions b/w web ad fleye
\rightarrow lerye exposed area te wind.
Typer of sections

\rightarrow Simplest tyre.
\rightarrow Angles cennected 6 web t used as flaje.
Bolted who coverplutes

Boltes winh cover ploles Bolted win carpilta
 tsite pelle.

Typer of plate girders
Bolted/Riveted plde giver welded plate girder

* spans- 15 to 30 m
* Self weight 15 high due to provision of ea ales and Faye cove plates
* Spar unto loom
\times Economic compared to bolted 1 riveted pletegider duets reduction in self wait

Elements of Plate sides
\rightarrow was plate
\rightarrow Flare pete
\rightarrow Flange angles or flange cover pele les
\rightarrow Stiffeners - be in, torture ad layituadind
\rightarrow Splines - wed + flange.
\rightarrow Connector between flange ad wed
Stifferes web and stiffeners

1) Bearing stiffeners oo load cory stiffeners
\rightarrow used the transfer the lad from bean the support
\rightarrow Used to avoid crushing of web at the ends.
\rightarrow Used when concentrated laud act on the girder.
2) Intermediate stiffeners
avoid
\rightarrow These sufferers are provided te afreet bulkily of web
\rightarrow Also called as stability stiffeners boring + iterindide
\rightarrow They ane of two types namely horizantel (Rexitudul) stiffeners and Notice (tronswerse) st fees

Horinatel stifferers - Vsed do incicase budiling streng/t resistance when budilyy caus sy beadtry

- Cererily located is compicsion nere
(d) a depth $0.2 d$ fiom compresionfor Pleye) slw vertical stiffor
Vectical stifferers Used te increase budcliy strength aganist resistance wha budlder
 Steps involved in daings of plate gides the Foclay shrogne wed
\rightarrow Assume self weight of girder, $\omega=\frac{\omega}{20}$ where w is totel fattord lond on gicler in kw ω is self weight of gider in kN / m

2) Calculate titaa berding mometrm)and shear fore(v)
3). Calulale ceonomical depth of plate girder

$$
d=\left(\frac{m / c}{f}\right)^{1 / 3}
$$

where $M-B M, f_{y}=200 \mathrm{NmM}^{2}$

$$
k=\frac{d}{t w}=67
$$

(i) $k=\frac{d}{t w} \leqslant 67$ (plice girdes derigned as ordinay beam wo stiffereas beering stiffener.)
(ii) $k_{=}=\frac{d}{t w}=67$ to200 (when transverse stifferees are not proviled kxept bearing stifferess)
(iii) $k=\frac{d}{t w}<200$ to 220 (wheen only trannerse stiffereers are provicled)
(ii) $1=\frac{b}{t u}<350$ to 340 (whe transvered logitudind stifferes provided a treelawe
(iv) $k=\frac{d}{h_{u}}=340 \mathrm{~d} 400$ (Wher a second loyyi stifferen is provided

$$
\text { Py } 59-8.42 .1+P y 63-8.61
$$

Cetculte web the form asounal dlew value
4) Determine fleze are reavired

$$
A_{f}=\frac{M Z_{m 0}}{f_{j d}}
$$

Flange witth is suitelly taker as 0.3 times dadth of wob and thic to axtisfy scctan classificatan $\left(\frac{b}{H_{f}}<9.4 \rightarrow\right.$ Plastic, $2-10.5 \rightarrow$ Gempal, <15.7 - Semi
sf sechm Clesrifutin campls
5.) Sheck shear nesistarce of web using simple pust critial methed ($8.4 .22-1859$) or tession fuld inellod $\left(8.42 .2-P_{g} 60\right)$
7B) Check for bending streyth dopending upon whethes the plate girder is latesally suppoited ($8 \cdot 2 \cdot 1.2 \mathrm{P}$ S3 or leterally unsupported $\left(8.22-1 \mathrm{P}_{2} 54\right)$ wet a cennectuir
10) Design conechoon between flaye + web plete, by welling or bolting
weld

$$
\begin{equation*}
\text { Shear fore }=\frac{V A_{f} \dot{y}}{2 I_{f}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Sheagh of wed per viit layth }=\frac{\text { iwtefu }}{\sqrt{3}}=\frac{\text { tetu }}{\sqrt{3}} \tag{2}
\end{equation*}
$$

Eunatuag (1)+(2) teis obtained.

$$
\text { te }=0.7 \times s \Rightarrow s=\text { telo.7 }
$$

Frim abive equation sine of weld is celeubler
Bolt
BoIt vclue $=$ Seart of stangh dbut in show becrig, tension Nof bobb $=\operatorname{lood} / B_{0} 1 t$ value.

1) Design a welded plate girder 24 m in span and laterally vestraired throughout. It has to support a unifurm lead of $100 \mathrm{ku} / \mathrm{m}$ throughout the spas exclusive of self wt. Design the girder wither intermediate transverse stiffeners. The steel for the flange and web plates is of grade recto Yield sties may be assured as 250 mpa . Design as, and lead beariz stifferen +6 mentions.

Step 1 - Load Calculation

$$
\begin{aligned}
& \text { Step } 1-\text { load } 1 \mathrm{lcod}=\frac{100 \times 15}{\text { Fateral }}=150 \mathrm{kN} / \mathrm{m} \\
& \text { Self acight, } w=\frac{w}{200}=1800 \\
& \text { Factored selw wt }=15 \times 18=27 \mathrm{kN} / \mathrm{m} .
\end{aligned}
$$

Step 1 - Lord Calculates

$$
\begin{aligned}
& \text { Live Load }=100 \mathrm{kN} / \mathrm{m} \\
& \text { Self weight }=\frac{w}{200}=\frac{100 \times 24}{200}=12 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

\therefore Total laud $=100+12=112 \mathrm{kN} / \mathrm{m}$.
ToLl $F L=15 \times 112=168 \mathrm{~kJ} / \mathrm{m}$
Step $2-B M+S F$

$$
\begin{aligned}
& S F-\frac{W l}{2}=\frac{168 \times 24}{2}=2016 \mathrm{kN} \\
& B M=\frac{W l 2}{8}=\frac{168 \times 24^{2}}{8}=12096 \quad \mathrm{kmm}
\end{aligned}
$$

Step 3- Ecormicel depth + thle of wab
Economicel depth, $d=\left(\frac{M l c}{f_{y}}\right)^{1 / 3}$
$L_{C}=\frac{d}{t_{w}}=67$ to 200 (wher no intermedicte trosserse Stifferers an provided)
Assume $k=11$ decrease thir vilu)

$$
\begin{aligned}
d & =\int^{\frac{12096 \times 10^{6} \times 1}{250}} \\
& =174595 \mathrm{~mm}
\end{aligned}
$$

Economied depth, $d=1800 \mathrm{~mm}$

$$
\frac{d}{t_{w}}=110 \Rightarrow \frac{1800}{h_{w}}=110 \Rightarrow t_{w}=16 \mathrm{~mm} \simeq 16 \mathrm{~mm}
$$

Presilelueb plete f sile $1800 \times 16 \mathrm{~mm}$. ($A_{w}=1800 \times 16$ $\left.=28,800 \mathrm{~mm}^{2}\right)$
Stop 4- Flage aree

$$
\begin{aligned}
& \text { nequirel flerge aree, } A_{f}=\frac{M \nu_{m_{0}}}{f_{y j}} \\
& =\frac{12096 \times 10^{6} \times 111}{250 \times 1800} \\
& A_{f}=2956 \mathrm{smm}^{2} \\
& \text { Flenge width }=0.3 \times \text { depth } f \text { web } \\
& =0.3 \times 1800 \\
& \text { = S40mm an foom } \\
& \text { Thicloers of flerge }=\frac{\text { Flage aler }}{\text { Paige width }}=\frac{29568}{600} \\
& =49.28 \mathrm{~mm} \quad A_{f}
\end{aligned}
$$

Provide Flage plete of sive $=6000 \times 50 \mathrm{~mm}$ ($2 \times 600 \times 50=60,000 \mathrm{~m}$)

Step 5-) Section classification

$$
\frac{b}{f_{f}}=\frac{600 / 2}{50}=6<9.1 \xi \xi \text { Plastic }
$$

Step0-) (heck furshear resistance
ise simple pust critied methed (w' tronverse shfferes at intermedicte)
$P_{y} S 9, V_{n}=V_{c r}=A_{y} Z b$
Whece $A_{w}=d t_{w}=1800 \times 16=28800 \cdot \mathrm{~mm}^{2}$

$$
\begin{aligned}
& \lambda_{w}=\sqrt{\frac{f_{y w}}{\sqrt{3} \tau_{l,, e}}} \\
& \tau_{c, e}=\frac{k_{w} \pi^{2} F}{12\left(1-u^{2}\right)\left(d / t_{w}\right)^{2}}
\end{aligned}
$$

$k_{u}=5.35$ (tranverse stffeross proviled anly at suppurt and not at intermediale points)
Bearin stiffener is essentig kw

$$
\begin{aligned}
& \tau_{e r c}=\frac{5.35 \times \pi^{2} \times 2 \times 10^{5}}{12\left(1-0.3^{2}\right) \times 140^{2}}=79.924 \mathrm{Nmm}^{2} \\
& \lambda_{w}=\sqrt{\frac{250}{\sqrt{3} \times 79.92 y}}=1.344 \\
& \lambda_{w} \geq 0.8 \Rightarrow \\
& c_{b}=f_{y \omega} / \sqrt{3} \lambda \lambda^{2}=250 /\left(\sqrt{3} \times 134_{4}^{2}\right)=79.90 \mathrm{~N}^{2} / \mathrm{mn}^{2} \\
& \therefore V_{C r}=28800 \times 79.906=2.381 \times 10^{6} \mathrm{~N} \\
& =2351.29 \mathrm{kN}
\end{aligned}
$$

Step)-Check for berding slangha:

$$
\Rightarrow \quad M_{d}=\mid \|^{2 p} f_{g} / \nu \mathrm{Moc}<1.22 \mathrm{ef} / \mathrm{L} \mathrm{Mo}
$$

where $\beta_{b}=1.0$ (plasti section) or $\frac{20}{2 p}$ (semiconpat rect,
Since flages fesist beraing bending moment, $2 p+2 e$ are celculdet for fleyes ony.
com

$$
\begin{aligned}
2_{p} & =\quad \text { Ah/2 } \\
& =\left(\frac{1900}{2}\right)+\left(2 \times 600 \times 50 \times \frac{1900}{2}\right) \\
& =\left(1800 \times 16 \times\left(60,000 \times \frac{1900}{2}\right)\right. \\
& =(
\end{aligned}
$$

600 since $h^{2}=57.7 \times 10^{7} \mathrm{~mm}^{3}$ I 15 celculted ong for thaye In $2_{e}=I / y$ where $I=\left(\frac{600 \times 50^{3}}{12}\right)+(600 \times 50)\left(\frac{50}{2}-950\right)^{2}$

Is

$$
\begin{aligned}
& \begin{aligned}
& 2_{e}=I / y \text { where } I=\left(\frac{600 \times 50^{3}}{12}\right)+(600 \times 50)\left(\frac{50}{2}-950\right)^{2} \\
&+\left(\frac{600 \times 50^{3}}{12}\right)+(600 \times 50)\left(50+1800+\frac{50}{2}-95\right)^{2}
\end{aligned} \\
& =\left(\begin{array}{c}
\binom{.5675 \times 10}{5.135 \times 10^{10}}+\left(2.5675 \times 10^{10}\right)+\left(\left(277 \times 10^{9}\right)\right.
\end{array}\right. \\
& =:-10 \\
& z_{e}=I / y=\left(5.135 \times 10^{10}\right) / 950=5.405 \times 10^{7} \mathrm{~mm}^{3}
\end{aligned}
$$

When sectien is plostic

$$
\begin{aligned}
M_{d} & =\frac{1.0 \times 5 \times 7.10^{7}}{1.1} \times 250<\frac{1.2 \times 5405 \times 10^{7}}{1.1} \times 250 \\
& =1.29 .5 \times 10^{10} \mathrm{Nmm}<1.474 \times 10 \\
& =12950 \mathrm{kmm}<14740 \\
& =12950 \mathrm{kNm}
\end{aligned}
$$

$$
12096<12950 \mathrm{kwm}
$$

wher sectien is seni corpent

$$
\begin{aligned}
& \left.M_{d}=\frac{2 e}{2 p} z^{2} \text { fy }\right) \text { umo } c 1.2 \text { ze fylduno } \\
& =\frac{2 e f_{y}}{\nu_{m_{0}}}<1.2 \operatorname{Zefl} w_{n_{0}} \\
& =\frac{2 c f}{\Delta n_{0}}=\frac{5.405 \times 10^{8} \times 250}{1.1} \\
& =F 288 \times 10^{10} \mathrm{Nmm} \\
& M d=12,280 \mathrm{kWm} \\
& 12096 \text { < } 2880 \mathrm{kNm}
\end{aligned}
$$

Step8- Design of and bearing stifferes or lead

$$
\begin{aligned}
& \text { (i) Design fure } \\
& P_{2} 67-\overline{8.7 .4} \\
& F_{\omega}=\left(b_{1}+n_{2}\right)+t_{\omega} f_{\omega} / \omega_{m_{0}} \\
& \text { Where } b_{1}=125 \mathrm{~mm} \text { (Assine) } \\
& n_{2}=2.5\left(t_{f}+t_{1}\right)^{0}=2.5(50)=125 \mathrm{~mm} \\
& \therefore F_{w}=\frac{(125+125) \times 16 \times 250}{1.1}=9.09 \times 10^{5} \mathrm{~W} \\
& =909 \mathrm{kN}
\end{aligned}
$$

$$
909 \mathrm{kN} \neq 2016 \mathrm{~kW}
$$

Hence end beariy stiffeners are required
P.jb8-8.7:6] Bearing stifferes should be designed for appliced lead or reaction less the lacal copauty of web (909/w)

$$
\begin{aligned}
\text { Design force } & =\text { Reador }- \text { Locel copacily of wes } \\
& =5 F-11 \\
F_{x} & =2016-909=1107 \mathrm{kw}
\end{aligned}
$$

(ii) Sire

$$
\text { Pg } 65-8.7 .1 .2 \text {, Outstiand of stifferes }=14 t_{9} \text { \& }
$$

where $t_{a,} \rightarrow$ Thk of stiffereer $=16 \mathrm{~mm}$ (web the-assume)

$$
\begin{aligned}
& \varepsilon=\left(\frac{250}{200}\right)^{1 / 2}=1 \\
& \therefore \text { Outhand }=14 \times 16 \times 1=224 \mathrm{~mm}
\end{aligned}
$$

Outstand cuailcble $=\frac{600-16}{2}=292 \mathrm{~mm}$

\therefore Provide stifferer of sive $224 \times 16 \mathrm{~mm}$
(iii) Chack for budaling
$P y$ 68-8.7.5.1 $\quad \lambda=\frac{I L L}{r}$ where $r=\sqrt{\frac{I}{A}}$
Curve - C

$$
\begin{aligned}
\text { Grettree of shiffere with web wea } & =(2 \times 224 \times 16)+(2 \times 32 \times \times k) \\
& =17408 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { I.. }=I_{x x}+A(y-y)^{2} \text { where } \bar{y}=\frac{224+16+22 y}{2}=232 \mathrm{~m} \\
& =\left[\left(\frac{16 \times 294^{3}}{12}\right)+(16 \times 224)\left(\frac{224}{2}-232\right)^{2}\right] \\
& +\left[\left(\frac{\left(6 \times 224^{3}\right.}{12}\right)+(16 \times 224)\left(224+16+\frac{224}{2}-232\right)^{2}\right] \\
& +\left[\left(\frac{640 \times 16^{3}}{12}\right)+(640 \times 16)\left(224+\frac{16}{2}-232\right)^{2}\right] \\
& =\left(6.66 \times 10^{7}\right)+\left(6.66 \times 10^{7}\right)+\left(2.185 \times 10^{5}\right) \\
& \pm=1.336 \times .10^{8} \mathrm{~mm}^{4} \text {. } \\
& r=\sqrt{\frac{I}{A}}=\sqrt{\frac{1.336 \times 10^{8}}{17408}}=87.605 \mathrm{my} \\
& K L=0.7 L=0.7 \times 1800\left(d_{\text {ep }}\right)=2260 \mathrm{~mm} \\
& \rangle=\frac{1 a}{r}=\frac{1260}{87.605}=14.383 \\
& \begin{array}{l}
B C_{1}-C_{1} \lambda=14.383 \Rightarrow \begin{array}{ll}
\lambda & f_{d} \\
10 & 227 \\
20 & 224 \\
& \frac{3}{10} \times 4.383=1.315
\end{array} \\
\therefore A_{d}=227-1.315=225.685 \mathrm{Nmm}^{2}
\end{array} \\
& P_{d}=A \times f_{d}=17408 \times 225.685=3.929 \times 10^{6} \mathrm{~N}=3929 \mathrm{kN} \\
& >2016 \mathrm{~kW}
\end{aligned}
$$

(ii) Check for bearing

$$
\text { Pg 6r-8.7.5.2, } \quad F_{p s d}=\frac{A_{0} f_{g q}}{0.8} \geq F_{x}
$$

Since the stifferes will be coped to accomodete the fillet weld of flange plate to web, the available effecture with of stiffeners will be leones then actual with. Ret the stiffer plate be coped by 15 mm

$$
\begin{aligned}
\text { Width a valuable for bearing } & =224-15 \\
& =204 \mathrm{~mm}
\end{aligned}
$$

- Area of stiffer in canted with the $=209 \times 16 \times 2 \quad \mid \overline{224}$

$$
\begin{aligned}
& =6688 \mathrm{~mm} \\
F_{\text {pod }} & =\frac{6688 \times 250}{0.8 \times 1.10} \\
& =1.9 \times 10^{6} \mathrm{~N}=1900 \mathrm{~kW} \\
F_{x \rightarrow \text { Local }} \text { denfuevel } & =\text { Design force }=1107 \mathrm{kw} \\
1900 & >11001 \mathrm{w}
\end{aligned}
$$

Cheat for torsions fold restraint

$$
\begin{aligned}
& P_{5} 68-8.99 \\
& \quad I_{s} \geq 0.34 \alpha_{s} D^{3} T_{c f}
\end{aligned}
$$

where d_{5} depends on $L_{t_{T}} \mid r_{y}$ whee e $r_{y}=\sqrt{\frac{I_{y}}{A}}$ (radius fraction of beam

$$
\begin{aligned}
& +\left[\left(\frac{\left(1800 \times 10^{3}\right.}{12}\right)+(16 \times 1800)\left(\frac{600}{2}-\frac{600}{2}\right)^{2}\right] \\
& =\left(9 \times 10^{8}\right)+\left(9 \times 10^{8}\right)+(7776 \times 109)=1.801 \times 10^{9} \mathrm{ma}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& A=(2 \times 600 \times 50)+(1800 \times 16)=88800 \mathrm{~mm}^{2} \\
& r y=\sqrt{\frac{I y}{A}}=\sqrt{\frac{1.801 \times 109}{88800}}=142.413 \\
& L_{L T}=H L=24 M=24 \times 10^{3} \mathrm{~m} \\
& \frac{L_{17}}{r_{y}}=\frac{24 \times 10^{3}}{142.43}=168.5247100 \\
& \Rightarrow X_{S}=\frac{30}{\left(L_{(T / z)}\right)^{2}}=\frac{30}{168.52 y^{2}}=1.656 \times 10^{-3} \\
& D=1800+2(0)=1900 \\
& \therefore I_{s}=0.34 \times 1.056 \times 10^{-3} \times 1900^{3} \times 50=1.231 \times 10^{8} \mathrm{~mm}^{4} \\
& \text { I5 provided }=\frac{b d^{3}}{12}=2 \times 16 \times 2213=1.336 \times 10^{8} \mathrm{~mm} 4
\end{aligned}
$$

Step - Conrechon blw flenge t wib plate
Sheer fore, $q=\frac{V A y}{2 I \cdot I}$

$$
\begin{align*}
& =\frac{2016 \times 10^{3} \times 600 \times 50 \times 950}{2 \times 5.135 \times 10^{10}} \\
& =0.432559 .455 \frac{\mathrm{~N}}{\mathrm{~mm}} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \text { Striagth of well. per unit length }=\frac{\text { Lwtefu } / \sqrt{3}}{2 \text { mm }} \\
& =\frac{\operatorname{tef} \operatorname{ta} / \sqrt{3}}{L_{m}} \\
& =\frac{t e x 40 / \sqrt{3}}{1.25} \\
& =189.371 \mathrm{te} \mathrm{Nan} \\
& \text { Equachis (1) (C) } \Rightarrow 559.455=189.371 \text { te } \\
& \Rightarrow t_{e}=2.954 \\
& 0.7 \times 8=2.954 \\
& \Rightarrow s=4.22 \mathrm{~mm} \triangle 5 \mathrm{~mm} \text {. }
\end{aligned}
$$

Let ur proside well of sile 5 mm .

Steple- Comećdeen b/w web plete and isheferes

$$
\begin{aligned}
& \text { With avaicsle }=224-15=209 \mathrm{~mm} \\
& \text { B } 32-0.3 .1
\end{aligned}
$$

$$
\begin{align*}
& \text { Where } A_{n}=\left[b-n \hat{A}_{n}^{0}+\frac{\chi_{0}}{\phi_{0 i}^{2}}\right]+ \\
& A_{n}=209 \times 16=334 \mathrm{cmm}^{2} \\
& \therefore \text { Tassion copricly }=\frac{0.9 \times 33 \mathrm{k} 1{ }^{2} \times 410}{1.25}=9.87 .15 \times 10^{0} \mathrm{~N}=987.15 \mathrm{ko} \\
& \text { Cepardy percnil-layt }=\frac{987 \cdots \times 10^{3}}{2(1800-2 \times 15)}=278.856 \tag{-1}\\
& \text { Svanglly weld per ourt bygh }=\frac{\text { Luteful } \sqrt{3}}{D_{M}} \\
& =\frac{1 \times \operatorname{tex} 401 / \sqrt{3}}{1.25}=189 \cdot 3 \pi 1 \text { te. (3) }
\end{align*}
$$

$$
\begin{aligned}
\text { Equeting © (2) } & \Rightarrow 278.856=189.371 \mathrm{tc} \\
\Rightarrow t c & =1.473 \mathrm{~mm} \\
0.7 \times 8 & =1.423 \\
s & =2.104 \mathrm{~mm} \mathrm{~min}
\end{aligned}
$$

Provide sweld side \& smm (Thic for $(c-20 \mathrm{~mm}$ pleter $=\operatorname{smm}$
P27-T6ble 21)
2) Rederig the plate girda using intermeduele trunsverse stifferess. Connectioss need not be designed. Use purt critul nethed of design

Step 3- Ecenomice depth 1 the of web
het $\frac{d}{t w}=780 \quad(3 d \geq c \geq d)$
Step 1-lecd Celcuateen

$$
\begin{aligned}
& F L=168 \mathrm{kN} / \mathrm{m} \\
& S\left(t_{p}\right)-S F J(B \mathrm{~m} \\
& S F=2016 \mathrm{kw} \\
& B M=12096 \mathrm{kNM}
\end{aligned}
$$

Slop 3-Frenomicel clepthd thle of wids

$$
\begin{aligned}
& d=\left(\frac{m k}{f g}\right)^{1 / 13} \\
& l=\frac{d}{t_{w}} \leqslant 200 \text { to } 270, \leq 200(3 d \geq(2 d)
\end{aligned}
$$

Asine $k=190$

$$
\begin{aligned}
& d=\left(\frac{12096 \times 106 \times 190}{250}\right)^{1 / 3}=2094: 844 \\
& \frac{d}{t_{w}}=180 \Rightarrow \frac{200}{t_{w}}=190 \Rightarrow t_{w}=11.053 \mathrm{~mm} \\
& \therefore \text { Provibe }
\end{aligned}
$$

\therefore Provide hos pldid of sine $2100 \times 12 \mathrm{~mm}\left(A_{2}=2100 \times 12\right.$

$$
\begin{aligned}
\text { Spaciy - } 3 d \geq c \geq d \\
3 \times 2100 \geq c \geq 2100 \\
6300 \geq c \geq 2100
\end{aligned}
$$

Provide trensuerse slfferes at a spany of $C=2.5 \mathrm{~m} \cdot \mathrm{n}$
Step 4- Flage are

$$
\begin{aligned}
& A_{f}=\frac{M_{u m e}}{f_{1 I}}=\frac{12096 \times 10^{6} \times 1.1}{200 \times 2100}=25344 \mathrm{~mm}^{2} \text {, with }=0.3 \times 2100=60 \mathrm{~mm} \\
& \begin{array}{l}
\text { Flage- } 600 \times 50\left(A=2 \times 600 \times 50=60000 \mathrm{~mm}^{2}\right) \quad \text { The }=\frac{25344}{636}
\end{array} \\
& \text { Stes } 5 \text { - Sedian classifuctuen } \\
& =40.229 \\
& =50 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{b}{t_{4}}=\frac{600 / 2}{50}=6<9.4 \&-\right) \text { Plestr } \\
& \frac{d}{d J} A 80 \quad \frac{d}{t_{w}}=190 \& 126
\end{aligned}
$$

Step b-Chek for sheen resistance
$P_{j} s 9, V_{n}=v_{c r}=A_{0} ?_{b}$
Where $A_{v}=d h_{w}=2100 \times 12=25200 \mathrm{ma}^{2}$

$$
\begin{aligned}
& \lambda_{\omega}=\sqrt{\frac{f_{y_{w}}}{\sqrt{3} \tau_{c r, e}}} \\
& \tau_{c_{1},}=\frac{k_{u} \pi^{2} 2 \mathrm{E}}{12\left(1-\mu^{2}\right)(d / h)^{2}} \\
& c / d=\frac{2500}{2100}=1-92 \geq 10
\end{aligned}
$$

$$
\begin{aligned}
& k_{v}=5.35+\frac{4.0}{\left(c(d)^{2}\right.}=5.35+\frac{4.0}{1.19^{2}}=8.175 \\
& \tau_{\text {erie }}=\frac{8.175 \times 1_{1}^{2} \times 2 \times 10^{5}}{12\left(1-0.3^{2}\right) \times 180^{2}}=40.936 \mathrm{~N} / \mathrm{mm}^{2} \\
& \lambda_{\omega}=\sqrt{\frac{f_{j w}}{\sqrt{3} \tau_{\text {erie }}}}=\sqrt{\frac{250}{\sqrt{3} \times 45.604} 40.934}=1.818 \\
& \lambda_{\omega} \geqslant 1.2, z_{b}=\frac{f_{y_{\omega}}}{\sqrt{3} \lambda_{\omega}{ }^{2}}=\frac{250}{\sqrt{3} \times 1.878^{2}}=40.607 \mathrm{~N} / \mathrm{mm}^{2} \\
& Y_{1 r}=25200 \times 45.607=1.034 \times 10^{6} \mathrm{~N}=1031 \mathrm{kN} \\
& 40.925
\end{aligned}
$$

Step 7-Check for bending strezth

$$
\begin{aligned}
& 0.6 U_{d}=0.6 x \\
& M_{d}=\beta_{b}^{2} p \delta / 2 m_{0}<1.2 \varepsilon_{e} \text { folimo }
\end{aligned}
$$

where $\beta_{b}=1.0$ (plaster section)
z_{p} - Since flange resist BM, ipo zoe are celaleted for lases only.

$$
\begin{aligned}
& 2_{p}=2_{p \text { thy }}=A h / 2=600000 x \cdot\left(\frac{2100+50 t r 0}{2}\right)=66 \times 13 \mathrm{~mm}^{3} \\
& z_{e}=21 y=\left(5.135 \times 10^{10}\right) \times\left(\frac{(100) \times 5070}{2}\right)=4.668 \times 10 \mathrm{~m}^{3} \\
& M_{d}=\frac{10 \times 6.6 \times 10^{7} \times 250}{1.1}<\frac{1.2 \times 1.668 \times 10^{7} \times 250}{1.1} \\
& =1.5 \times 10^{10}<1.273 \times 10^{10} \\
& =15000<12730=12730 \mathrm{kNF} \\
& 12096<12730
\end{aligned}
$$

trinsule
Steps-Design of intermediate stiffeers

$$
\begin{aligned}
& P_{g} 66-8.72 .4, \quad \frac{c}{d}=\frac{2500}{2100}=1.19<\sqrt{2}(1414) \\
& \Rightarrow I_{s}=\frac{1.5 d^{3} \mathrm{ho}^{3}}{c^{2}} \\
& \left.=\frac{1.5 \times 2100^{3} \times 12^{3}}{2500^{2}}=3.841\right) \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Iry intermediate trannuerse stifferes of size 100×12 on both sides

$$
\begin{aligned}
I= & \left(\frac{12 \times 100^{3}}{12}\right)+(12 \times 100)(\\
& I=\left[\left(\frac{12 \times 100^{3}}{12}\right)+\left(-12 \times 100 \times\left(\frac{100}{2}-100\right)^{2}\right]+\right. \\
& \left.=\left(\frac{12 \times 100^{3}}{12}\right)+(12 \times 100) \times\left(100+10+\frac{100}{203}-105\right)^{2}\right] \\
= & \left.1.6526 \times 10^{6}\right)+\left(8206 \times 10^{6}\right) \\
& =\left(\mathrm{mm}^{4}\right) 3.841 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

(i) Check for buekling
$P_{y} 67,8.7 .25, \quad$ Dolutity Design if $f_{q}=\frac{V-V_{c r}}{D_{m 0}}$
Stifforer fore, $F_{a}=\frac{Y-y_{c r}}{\nu_{r o}}$

$$
\begin{aligned}
\text { Wheve } v_{\rightarrow \rightarrow} \text { Falored sF near Stifferen } & =\frac{w(-x)}{2} \\
& =\frac{168 \times(24-2.5)}{2} \\
& =1806 \mathrm{kN} \\
V_{c r} & =1031 \mathrm{kN} \\
F_{q} & =\frac{1806-1031}{1.1}=704.545 \mathrm{~kW}
\end{aligned}
$$

Considerif gut on both sides,

$$
\begin{aligned}
& \text { Hice } A=(2 \times 200 \times 10)+(2 \times 100 \times 12)=6400 \mathrm{~mm}^{3} \\
& I_{x y}=I_{x x}+A(y-y)^{2} \text { where } y=\frac{100+10+100}{2}=105 \mathrm{~mm} \\
& =9.26 \times 10^{6}+\left[\left[\frac{400 \times 10^{3}}{12}\right)+(400 \times 10) \times\left(100+\frac{10}{2}-105\right)\right] \\
& I=9.293 \times 10^{6} \mathrm{~mm} 4 \\
& r=\sqrt{\frac{I}{A}}=\sqrt{\frac{9.293 \times 10^{6}}{6400}}=38.11 \\
& k=0.7 \times L=07 \times 2100=1470 \mathrm{~mm} \\
& |u|_{r}=1470 / 38 \cdot 11=38.573 \\
& B C+C, \lambda=38.573 \Rightarrow \begin{array}{lll}
\lambda & f_{d} \\
30 & 211 \\
40 & 198
\end{array} \quad \frac{13 \times 8.573}{10}=11.145 \\
& f_{d}=211-11.145=199.855 \mathrm{NhM}^{2} \\
& Y_{\text {cu }} \text { B. A } \times h \mathrm{hl}=6400 \times 199.855=1.279 \times 10^{6} \mathrm{~N}=12791 \mathrm{~N} \\
& 704.545<1229 \mathrm{kv}
\end{aligned}
$$

UNIT-5 Connections (welded)
Beams may be connected to supporting by welding (or)bolting. In practice welded connections are commonly used instead of bolted connection.

The end of the beam may be designed to transferred shear to supporting column by \rightarrow framed connection
\rightarrow unstiffened seated connection
\rightarrow Stiffened seated connection
The end of the beam may be designed to transfer shear as well as moment by \rightarrow Moment Resistant Connection
framed connection:
(1). An ISMB 400 beam is connected to ISHB 250 column to transfer end force of

14OKN-Design double plated welled connection:
[width of plate $=50$]assume
Soln:

$$
\begin{aligned}
\text { Factored Shear Force } & =140 \times 1.5 \\
& =210 \mathrm{kN}
\end{aligned}
$$

Using 50 mm wide plate, factored moment on weld connecting plate and beam

$$
\begin{aligned}
\text { Moment } & =\text { load } \times \text { Plate width } \\
& =210 \times 10^{3} \times 50 \\
& =10.5 \times 10^{6} \mathrm{kNmm}
\end{aligned}
$$

- Thickness of plate should be 1.5 mm more than web thickness of beam.

From $\operatorname{SP} 6$, Table l, Pg $2, t w=8.9 \mathrm{~mm}$ (ISMB400)
Plate thickness = Thickness of bean +1.5

$$
\begin{aligned}
& =8.9 \mathrm{H} \cdot 5 \\
& =10.4 \mathrm{~mm} \text { (For lathe plate thickness }+2 \mathrm{~mm}=10.4 \simeq 10+2 \\
& \\
& =12 \mathrm{~mm}
\end{aligned}
$$

use lathe of Size $50 \mathrm{~mm} \times 12 \mathrm{~mm}$

$$
\begin{aligned}
& (\approx 10+2 \\
& \quad=2 \mathrm{~mm})
\end{aligned}
$$

Strength of weld:

$$
\begin{aligned}
& \text { DS 800, Pg 79, } 10.5 .7 .11 \\
& \text { Design of Strength of filled weld, fud }=\frac{f_{w n}}{\nu \nu_{m \omega}} \\
& \text { where, fun }=\frac{f u}{\sqrt{3}}=\frac{410}{\sqrt{3}} \\
& \nu_{\text {mus }} \\
& \nu_{m w}=1.5 \text { (field weld) }-P_{g} 30 \text { (Shop weld) }
\end{aligned}
$$

Design is made for field weld, Same is adopted for shop weld

$$
\begin{aligned}
f_{w d} & =\frac{f_{w n}}{\nu m w} \\
& =\frac{23669}{1 / 5}=\frac{236.71}{1.5} \\
f_{w d} & =157.809 \mathrm{~N} / \mathrm{mm}^{2} \text { (for field weld) } \\
f_{w d} & =\frac{236.71}{1.25} \\
f_{w d} & =189.368 \text { (For Shopweld) }
\end{aligned}
$$

Shop weld connecting plate and web of beam(weld B)
Assume 6 mm size of weld,

$$
\text { Throat thickness }=0.7 \times 5 \Rightarrow 0.7 \times 8
$$

$$
\begin{aligned}
& =30.7 \times 6 \\
T e & =4.2 \mathrm{mon}
\end{aligned}
$$

$$
\begin{aligned}
\text { Depth g weld, } h & =\sqrt{\frac{6 \mathrm{M}}{2 \text { tefud }}} \\
& =\sqrt{\frac{6 \times 10.5 \times 10^{6}}{2 \times 4.2 \times 189.3 .688} \cdot 157.809} \\
h & =28.0 \mathrm{~mm} .
\end{aligned}
$$

The above depth can resist bending moment alone, Additional depth of 20% is provided to resist shear.

$$
\begin{aligned}
\text { Depth } & =28+\left(\frac{20}{100} \times 218\right) \\
h & =261.8 \simeq 260 \mathrm{~mm}
\end{aligned}
$$

$$
\text { Dired Shear Stress } \begin{aligned}
q_{1} & =\frac{\text { shear force }}{\text { Area }} \\
& =\frac{V}{2 t h} \\
& =\frac{210 \times 10^{3}}{2 \times 4.2 \times 260} \\
q_{1} & =96.15 \mathrm{~N}_{1 \mathrm{~mm}^{2}}
\end{aligned}
$$

Stress duetobending $q_{2}=\frac{M}{2 z}$ where $z=\frac{t e h^{2}}{6}$

$$
z=\frac{\left(4^{2}\right)^{2}}{6}=2.9 \mathrm{~mm}
$$

$$
\begin{aligned}
z & =\frac{4.2 \times(260)^{2}}{6} \\
z & =47,320 \\
q_{2} & =\frac{00.5 \times 10^{6}}{2 \times 2} \\
q_{2} & =110.94 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Resultant Stress) } q & =\sqrt{q_{1}{ }^{2}+q_{2}{ }^{2}} \\
q & =146.81 \mathrm{~N}_{1} \mathrm{~mm}^{2}-(157.81 \text { (Assume) }
\end{aligned}
$$

Hence provide 6 mm size, 260 mm long.
Field weld connecting plate to column:

$$
\begin{align*}
\text { Strength of weld } & =\text { Area } \times \text { Stress } \\
& =2 \times t e \times h \times f w d \\
& =2 \times t e \times 260 \times 157.809 \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\text { Shear force }=210 \times 10^{3}= \tag{2}
\end{equation*}
$$

Equating eqn (1) \& (2)

$$
\begin{array}{r}
2 \times t e \times 260 \times 157.809=210 \times 10^{3} \\
t e=2.56 \mathrm{~mm}
\end{array}
$$

Throat thickness, $t e=0.7 \times 8$

$$
\begin{aligned}
2.56 & =0.7 \times \mathrm{s} \\
S & =\frac{2.56}{0.7} \\
S & =3.66 \mathrm{~mm}
\end{aligned}
$$

Provide 4 mm weld
2). An ISMB 400 beam is connected to ISHB 250 column to transfer end fores of 40 kN . Design double angle connection.

Soln
Assume: us \& 2DSA 9060 angles
Let the depth of angle be 260 mm
Design of weld A (field weld)

Design of weld A (field weld) $\left(q_{1}=90 \mathrm{~mm}, e_{2}=60 \mathrm{~mm}\right)$
factored shear force $=140 \times 1: 5$

$$
V=210 \mathrm{kN}
$$

Reaction on each angle (weld), $R=\frac{210}{2}=105 \mathrm{kN}$

$$
\begin{aligned}
& \text { Hor izontal shear, } q_{s h}=\frac{9}{5} \frac{q_{s}}{t_{e h}}=\frac{9}{5} \frac{105 \times 10^{3} \times 90}{\text { te } \times(260)^{2}} \\
& \begin{aligned}
& \text { ash } 15 \% \times 81=18 \times \frac{105 \times 10^{3} \times 90}{t_{e} \times(260)^{2}} \\
& 951.63
\end{aligned} \\
& \text { vertical Shear, } q_{v}=\frac{v}{2 t e h}=210 \times 10^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Horizontal Shear, } 9 s h=\frac{9}{5} \frac{V e l}{t e h^{2}}=\frac{9}{5} \frac{210 \times 10^{3} \times 90}{t e \times(260)^{2}} \\
& =1.8 \times \frac{210 \times 10^{3} \times 90}{t e \times(260)^{2}} \\
& q_{s h}=\frac{503.25}{t e}
\end{aligned}
$$

vertical Shear, $q_{v}=\frac{V^{t e}}{2 t e h}=\frac{210 \times 10^{3}}{2 \times t e \times(260)}$

$$
q_{v}=\frac{403.84}{t_{e}}
$$

$$
\begin{align*}
\text { Resultant } & =\sqrt{q_{s h}{ }^{2}+q_{v}^{2}} \\
& =\sqrt{\left(\frac{503.25}{t e}\right)^{2}+\left(\frac{403.84}{t e}\right)^{2}} \\
& =\frac{645.25}{t e} \longrightarrow 0 \tag{1}
\end{align*}
$$

strength of weld,

$$
\begin{align*}
& \text { fud }=\frac{f_{u n}}{\nu m \omega} \\
& \qquad f_{u n}=\frac{f_{u}}{\sqrt{3}}=\frac{410}{\sqrt{3}}=236.71 \\
& \text { for field weld }=\frac{236.71}{1.5} \\
& \text { fud }=157.809 \mathrm{~N}^{2} \mathrm{~mm}^{2} \tag{2}
\end{align*}
$$

En (1) 8 (2)

$$
\begin{aligned}
\frac{645.25}{t_{e}} & =15.7 .809 \\
t_{e} & =4.08 \mathrm{mw} \\
t_{e} & =0.7 \times 8 \\
\frac{4.08}{0.7} & =s \\
8 & =5.84
\end{aligned}
$$

Provide 6 mm weld.
Design of Shop weld (B)

$$
\text { Strength of weld, fud }=\frac{f_{w n}}{\nu_{m \omega}} \Rightarrow f_{w n}=\frac{110}{\sqrt{3}}=236.71
$$

$$
f_{u n}=\frac{236.11}{1.25}
$$

$$
f w d=189,368 \mathrm{~N}^{2} / \mathrm{Mm}^{2}
$$

$$
\bar{x}=\frac{A_{1} x_{1}+A_{2} x_{2}}{A_{1}+A_{2}}
$$

$$
=\frac{\left(50 \times \frac{A_{1}+A_{2}}{2}\right)+\left(50 \times t \times \frac{50}{2}\right)+(260 \times}{(50 \times t)+(50 \times t)+(2600 t)}
$$

$$
=\frac{1250 t+1250 t}{360 t}=\frac{2500 t}{360 t}
$$

$\bar{x}=6.94 \mathrm{~mm}$, from en $d=60-6.94=53.06 \mathrm{~mm}$

$$
\bar{y}_{1}=\frac{260}{2}=130 \mathrm{~mm}
$$

Shearforee perweld $=\frac{210}{2}=105 \mathrm{kN}$

$$
\begin{aligned}
& \text { Moment }=105 \times 10^{3} \times 53.06 \\
& =5.57 \times 10^{6} \mathrm{Nmm} \\
& I_{x x}=I_{x} x+A(y-\bar{y})^{2} \\
& \frac{\Lambda_{b d^{3}}^{12}}{} \\
& =\frac{\left(t \times 26^{3}\right)}{12}+(t \times 260)\left(\frac{260}{2}-130\right)^{2} \\
& +\left(\frac{50 x t^{3}}{12}\right)+(t \times 50)\left(\frac{t^{1}}{12}-130\right)^{2} \\
& \begin{array}{l}
+\left(\frac{50 \times x^{3}}{12}\right)+(t \times 50)\left(t+260-2 t+\frac{t^{2}}{2}-130\right)^{2}
\end{array} \\
& =\frac{17.57 \times 10^{6} t}{12}+(260 t)(0) \\
& +0+50 t\left(16.9 \times 10^{3}\right) \\
& \text { tot } 50 t(130)^{2}
\end{aligned}
$$

$I_{x}=3.15 \times 10^{6} \mathrm{tmm}^{4}$

$$
\begin{aligned}
I y y= & I_{y} y+A(x-\bar{x})^{2} \\
& \frac{d^{3}}{12} \\
= & \left(\frac{2 \times x^{12} t^{12}}{12}\right)+(260 \times t)\left(\frac{t}{2}-6.94\right)^{2} \\
& +\left(\frac{t \times 50^{3}}{12}\right)+(t \times 50)\left(\frac{50}{2}-6.94\right)^{2} \\
& +\left(\frac{t \times 50^{3}}{12}\right)+(t \times 50)\left(\frac{50}{2}-6.94\right)^{2} \\
= & {\left[260 t \times(6.94)^{2}\right]+\left[10.42 \times 10^{3} t+50 t(326.16)\right] } \\
& +\left[10.42 \times 10^{3} t+50 t(326.16)\right] \\
= & \left.260 t \times(6.94)^{2}\right]+26.73 \times 10^{3} t+26.73 \times 10^{3} t
\end{aligned}
$$

$$
\begin{aligned}
& =12.52 \times 10^{3} t+26.73 \times 10^{3} t+26.73 \times 10^{3} t \\
& =65.98 \times 10^{3} t \mathrm{~mm}^{4} \\
I_{y y} & =6.598 \times 10^{4} t \mathrm{~mm}^{4} \\
I_{P P} & =I_{x} \times+I y y \\
& =3.15 \times 10^{6} t+6.598 \times 10^{4} t=3.216 \times 10^{t} t \mathrm{~mm}^{4} \\
I_{P P} & =3.216 \times 10^{64} \mathrm{~mm} 4 \\
r & =130^{2}+6.94^{2} \\
& =130.18 \mathrm{~mm} \\
\theta & =\tan ^{-1}\left(\frac{130}{6.94}\right) \\
\theta & =86.94
\end{aligned}
$$

Stress due to twisting (horizontal) $q_{r}=\frac{M}{I p} \times r$

$$
\begin{aligned}
& =\frac{5.57 \times 10^{6}}{3.216 \times 10^{6} t} \times 130.18 \\
& =225.88 t=\frac{225.8}{t}
\end{aligned}
$$

Shear Stress(vertical), $q_{V}=\frac{F}{A}$
$=\left(1,0 \times 10^{3}\right)$ should not be take
Shear force Per weld $f=105 \mathrm{kN}$

$$
\begin{aligned}
& q_{v}=\frac{105 \times 10^{3}}{(260 \times t)+(50 \times t)+(50 \times t)} \\
& =\frac{105 \times 10^{3}}{260 t+50 t+50 t} \\
& =\frac{105 \times 10^{3}}{360 t} \\
& \text { arajodolana } \\
& q_{v}=\frac{291.67}{t} \\
& \text { De.dolzumolin } \\
& \text { Resultant }=\sqrt{q_{r}^{2}+q_{r}^{2}+2 q_{r} q_{r} \cos \theta} \\
& \begin{aligned}
\text { sriforer } & =\sqrt{\left(\frac{291.67}{t}\right)^{2}+\left(\frac{225.8}{t}\right)^{2}+2\left(\frac{291.67}{t}\right)\left(\frac{225.8}{1}\right)}
\end{aligned}
\end{aligned}
$$

Resultant $=\frac{378.260}{t} \mathrm{Nmm}^{2}$
Solving ign (1) 2 (2).

$$
\begin{aligned}
189.368 & =\frac{378.260}{t} \\
t & =\frac{378.260}{189.368} \\
t & =1.99 \mathrm{~mm} \simeq 2 \mathrm{~mm} . \\
0.7 \times s & =2 \\
s & =\frac{2}{0.7} \\
s & =2.85 \mathrm{~mm}
\end{aligned}
$$

use 3 morwweld
(x. $)^{3}$) An ISMB 400 transfer an end reaction of 160 kN and ar end moment of

80 kum to the flange of ISHB 300 . Design Moment Resistant connection

$$
\begin{aligned}
&\left.\begin{array}{l}
\text { Stepl:: } \\
\text { Design of } \\
\text { Tension plate e }
\end{array}\right\} \\
&=\frac{80 \times 10^{6}}{400} \\
&=2 \times 10^{5} \mathrm{~N}=200 \mathrm{kN} \text { tension plate }
\end{aligned}
$$

$$
\begin{aligned}
\text { Factored force } & =1.5 \times 200 \\
& =300 \mathrm{kV}
\end{aligned}
$$

where, $A_{n} \rightarrow$ mire of plate

$$
\begin{array}{r}
f_{u} \rightarrow \text { ultimate stars }=410 \mathrm{~N} \mathrm{imm}^{2}-300 \times 10^{3}=295.2 \mathrm{Am} \\
Q_{m} \rightarrow \text { Safely factor }=1.25 \quad \begin{aligned}
& =106.26 \mathrm{~mm}^{2} \\
A n & =1016.26 \mathrm{~mm}^{2}
\end{aligned}
\end{array}
$$

Thickness $=\frac{1016.26}{110}$

$$
=9.24 \mathrm{~mm} \simeq 10 \mathrm{~mm}
$$

Provide plate q width
 width of flange of ISMB400 is 140 mm selecting width of flange as 110 mm ,
110 mm and thiedn ass 10

EnOL (2)

mm , connect the plat e to column by full penetration for but weld.
no so[.Bypisadangle giunstifored
no sol. Botsisaranglagiunstiffored
Seated condition]
\therefore moneren
 Seated conlition
b-drommbensfiferm \qquad

Strength of weld = la te fuid

$$
\begin{aligned}
& =\text { lus te foud } \\
& =\text { luke } \frac{f_{m w}}{\sqrt{3} \times 8 m w}
\end{aligned}
$$

Assume size of weld as 8 mm, te $=0.7 x \mathrm{~s}$

$$
\begin{aligned}
& =0.7 \times 8 \\
\therefore & =5.6 \mathrm{~mm} .8 \mathrm{ct}
\end{aligned}
$$

$$
f u=410 \mathrm{~N} \mathrm{~mm}^{2}
$$

$$
\begin{gathered}
f u=40 \mathrm{Nlmm} \\
\nu_{m \omega}^{2}=1.25 \text { (shopweld) }
\end{gathered}
$$

Strength of weld $=6$ at 10$) \times 5.6 \times \frac{410}{\sqrt{3} \times 1.25}$

$$
=(2 a+110) \times 1060.49
$$

$$
=2 a(0060.47)+110(1060.47)
$$

$$
\begin{equation*}
=2120.95 a+116.65 \times 10^{3}- \tag{3}
\end{equation*}
$$

$\operatorname{EqMO}(3)$

$$
300 \times 10^{8}=2120.959+16.65 \times 10^{3}
$$

slpan pritar to mpresergte
$183.348 \times 10^{3}=220.95 a \quad$ an

$$
a=86.48 \mathrm{~mm} \simeq 90 \mathrm{~mm}
$$

$a=90 \mathrm{~mm}$
Length of weld $=2$ ati $10=290+110=296 \mathrm{~mm}$
Provide weld g leight 290 mmin - ? $100=$
Step 2:- Design of Seating angle.
 wrmb oprah eprxedyoul=

An ISMB 400 transfers an end reaction of 160 kN to the flange of 18 HB 300 . Designed unstiffered seated connection. Take $F_{B}=0.75 \times 250=187.5 \mathrm{~N} / \mathrm{mm}^{2}$.

$$
\begin{aligned}
& \text { For ISMB } 400, b_{f}=140 \mathrm{~mm}, t_{f}=16 \mathrm{~mm} \\
& \text { (fromSP6) } \quad \begin{aligned}
t w & =8.9 \mathrm{~mm}, r_{1}=1 \mathrm{~mm}, h_{2}=32.8 \mathrm{~mm} \\
B & =\frac{f}{f f_{1}} \quad \\
& =\frac{160 \times 103}{187.5 \times 8.9} \\
B & =95.9 \\
b & =B-\sqrt{3} h_{2} \nless \frac{B}{2} \\
& =95.9-\sqrt{3} \times 32.8 .8 \frac{95.9}{2} \\
b & =39.08 \Varangle 47.95 \\
\therefore b & =4.7 .95
\end{aligned}
\end{aligned}
$$

Let the bearing length of seating angle (b): be -4795

Step1:Design of Seating angle:

$$
\begin{align*}
\text { factored Moment } & =1.5 \times 1.27 \times 10^{6} \\
& =1.9 \times 10^{6} \mathrm{Nmm} \tag{1}
\end{align*}
$$

Assume length of seating angle equal to width of flange of beam $h\}=140 \mathrm{~mm}$

$$
\text { Moment of resistance, } M d=\frac{f y z p}{\nu_{m} w}
$$

where $f y=250 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{align*}
& z p=\frac{h t^{2}-7 b 144}{4}=\frac{140 \times t^{2}}{4} \\
& \nu_{m w}=1.25 \\
& M d= \\
& \frac{250 \times \frac{140 \times t^{2}}{4}}{1.25} \tag{2}\\
& M d=7000 t^{2}
\end{align*}
$$

Equating equation (1) 1 (2)

$$
\begin{aligned}
1.9 \times 10^{6} & =7000 t^{2} \\
t & =16.47 \mathrm{~mm}
\end{aligned}
$$

But we assumed 15 mm thicken ers, bul we got thickness $=16.47 \mathrm{~mm}$ So assume thickness $=20 \mathrm{~mm}$. (angle trulenioss)

Design of weld:

$$
2 \times P .00 \text { osadill mont }
$$

$$
q \nabla=\frac{f}{A}
$$

$$
=\frac{160 \times 10^{3} \times 1.5}{2 \times 40 \times t}
$$

nan: sw bro 2×40 ort

$$
q_{r}=\frac{857.14}{t}
$$

$$
\begin{aligned}
\text { Distance of reaction } & =\frac{10+b}{2} \\
& =\frac{10+\frac{47.95}{2}}{} \\
& =33.97 \mathrm{~mm} \\
\text { Moment } & =1.5 \times 160 \times 10^{3} \times 33.97 \\
& =8.15 \times 10^{6} \mathrm{Nmm} \\
q_{2} & =\frac{M}{2 z p}, Z p=\frac{t h^{2}}{4} \\
Z p=\frac{t \times 140^{2}}{4} & =4900 \mathrm{xt}
\end{aligned}
$$

$$
q_{2}=\frac{8.15 \times 10^{6}}{2 \times 4900+}
$$

$$
q_{2}=\frac{831.63}{t}
$$

$$
\text { Resullant, } q=\sqrt{q_{1}^{2}+q_{2}^{2}}
$$

$$
=\sqrt{\left(\frac{859.14}{t}\right)^{2}+\left(\frac{831.63}{t}\right)^{2}}
$$

$$
=\frac{1.19 \times 10^{3}}{t} \rightarrow 0 \text { (1) }
$$

$$
\begin{aligned}
\text { Stength of weld , fwod } & =\frac{\text { fun }}{\nu \mathrm{\nu ww}} \\
& =\frac{236.71}{1.25} \\
f_{\text {fud }} & =189.368 \rightarrow(2)
\end{aligned}
$$

Solving equation (1) (2) we get

$$
\begin{aligned}
6.3 & =0.7 \times S \\
S & =9 \mathrm{~mm}
\end{aligned}
$$

Provide 9 mm weld

Assume seat angle of size 18A $100 \times 100 \times 6 \sigma^{\circ} \mathrm{E}$ Lop and use 6 mm

$$
\begin{aligned}
& \text { epetole } \\
& \text { whllee = } \\
& \text { reservondran haman } \\
& 9189.8= \\
& \frac{6+5}{\frac{1}{5}}+\frac{4}{1-5}= \\
& \text { tronersergytay }
\end{aligned}
$$

